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The Setup

Suppose there is a scientific problem we are interested in solving
(This could be estimating a relationship between height and weight in humans)

The perspective of this class is to define these quantities as
random, say

• X = height

• Y = weight

We want to know about the joint distribution of X and Y

This joint distribution is unknown, and hence we

1. gather data

2. estimate it
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The Setup

Now we have data

Dn = {(X1,Y1), (X2,Y2), . . . , (Xn,Yn)},

where

• Xi ∈ Rp are the covariates, explanatory variables, or predictors
(NOT INDEPENDENT VARIABLES!)

• Yi ∈ R are the response or supervisor variables.
(NOT DEPENDENT VARIABLE!)

Finding the joint distribution of X and Y is usually too ambitious

A good first start is to try and get at the mean, say

Y = µ(X ) + ε

where ε describes the random fluctuation of Y around its mean
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Parameterizing this relationship

Even estimating µ(X ) is often too much

A good simplification is to assume that it is linear.

This means we suppose that there is a β ∈ Rp such that:

Y = µ(X ) + ε = X>β + ε︸ ︷︷ ︸
simplification

∈R

(The notation ∈ indicates ‘in’ and if I say x ∈ Rq , that means that x is a vector with

q entries)
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Parameterizing this relationship

Translated into using our data, we get

Y = Xβ + ε ∈ Rn

where

X =


X>1
X>2

...
X>n


Commonly, Xi1 = 1, which encodes an intercept term in the model.

X is known as the design or feature matrix
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Parameterizing this relationship: In detail

Back to the height/weight example:

X>1 = [1, 62],X>2 = [1, 68], . . . ,X>10 = [1, 65]

Estimating

β̂ = argmin
β
||Xβ − Y ||22 = argmin

β

n∑
i=1

(
Yi − X>i β

)2

finds the usual simple linear regression estimators: β̂> = [β̂0, β̂]
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Some terminology and overarching
concepts
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Core terminology

Statistics is fundamentally about two goals

• Formulating an estimator of unknown, but desired, quantities
(This is known as (statistical) learning)

• Answering the question: How good is that estimator?
(For this class, we will focus on if the estimator is sensible and if it can make

‘good’ predictions)

Let’s address some relevant terminology for each of these goals

8



Types of learning

Supervised

Regression Classification

Semi-supervised

PCA regression

Unsupervised

Clustering PCA

Some comments:

Comparing to the response (aka supervisor) Y gives a natural
notion of prediction accuracy

Much more heuristic, unclear what a good solution would be.
We’ll return to this later in the semester.
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How good is that estimator?

Suppose we are attempting to estimate a quantity β with an
estimator β̂.
(We don’t need to be too careful as to what this means in this class. Think of it as a

procedure that takes data and produces an answer)

How good is this estimator?

We can look at how far β̂ is from β through some function `

Any distance function1 will do...

1Or even topology...
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Risky (and lossy) business

We refer to the quantity `(β̂, β) as the loss function.

As ` is random (it is a function of the data, after all), we usually
want to average it over the probability distribution of the data:

This produces
R(β̂, β) = E`(β̂, β)

which is called the risk function.
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Risky business

To be concrete, however, let’s go through an important example:

`(β̂, β) =
∣∣∣∣∣∣β̂ − β∣∣∣∣∣∣2

2

(Note that we tend to square the 2-norm to get rid of the pesky square root.)

Also,

R(β̂, β) = E
∣∣∣∣∣∣β̂ − β∣∣∣∣∣∣2

2
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Risky business
Back to the original question: What Makes a Good Estimator of β?

Answer: One that has small risk!

It turns out that we can form the following

R(β̂, β) = E
∣∣∣∣∣∣β̂ − β∣∣∣∣∣∣2

2

= E
∣∣∣∣∣∣β̂ − Eβ̂ + Eβ̂ − β

∣∣∣∣∣∣2
2

= E
∣∣∣∣∣∣β̂ − Eβ̂

∣∣∣∣∣∣2
2

+ E
∣∣∣∣∣∣Eβ̂ − β∣∣∣∣∣∣2

2
+ 2E(β̂ − Eβ̂)>(Eβ̂ − β)

= E
∣∣∣∣∣∣β̂ − Eβ̂

∣∣∣∣∣∣2
2

+
∣∣∣∣∣∣Eβ̂ − β∣∣∣∣∣∣2

2
+ 0

= traceVβ̂ +
∣∣∣∣∣∣Eβ̂ − β∣∣∣∣∣∣2

2

= Variance + Bias
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Bias and variance

Two important concepts in statistics: Bias and Variance

R(β̂, β) = Variance + Bias
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Bias and variance

So, what makes a good estimator?

If...

1. R(β̂, β) = Variance + Bias

2. we want R(β̂, β) to be small

⇒ We want a β̂ that optimally trades off bias and variance
(Note, crucially, that this implies that biased estimators are generally better)

This is great but...

We don’t know E and hence we don’t know R(β̂, β)!
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We don’t know the risk

Since the risk is unknown, we need to estimate it

The risk is by definition an average, so perhaps we should use the
data...

This means translating

• risk in terms of just β into risk in terms of Xβ
(This might seem strange. I’m omitting some details to limit complexity)

E
∣∣∣∣∣∣β̂ − β∣∣∣∣∣∣2

2
⇒ E

∣∣∣∣∣∣Xβ̂ − Xβ
∣∣∣∣∣∣2

2

• “E” into “
∑

”
(i.e.: using the data to compute an expectation. You’ve done this before!)
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What Makes a Good Estimator of β?

An intuitive and well-explored criterion is known variously as

• Mean Squared Error (MSE)

• Residual Sums of Squares (RSS)

• Training error
(We’ll get back to this last one)

which for an arbitrary estimator β̂ has the form:

MSE(β̂) =
n∑

i=1

(
Yi − X>i β̂

)2 ??
≈ E

∣∣∣∣∣∣Xβ̂ − Xβ
∣∣∣∣∣∣2

2

Here, we see that if β̂ is such that X>i β̂ ≈ Yi for all i , then

MSE(β̂) ≈ 0.

But, there’s a problem... we can make MSE arbitrarily small...
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What Makes a Good Estimator of β?

Here’s an example:

Let’s suppose we have 20 observations with one explanatory
variable and one response.

Now, let’s fit some polynomials to this data.

Let µi be the conditional mean of the response Yi .
(That is µi = µ(Xi ) )

We consider the following models:

- Model 1: µi = β0 + β1Xi

- Model 2: µi = β0 + β1Xi + β2X
2
i + β3X

3
i

- Model 3: µi = β0 +
∑10

k=1 βkX
k
i

- Model 4: µi = β0 +
∑100

k=1 βkX
k
i

Let’s look at what happens...
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What Makes a Good Estimator of β?
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Fitting Polynomials Example

x

y

Model 1
Model 2
Model 3
Model 4

The MSE’s are:

MSE(Model 1) = 0.98

MSE(Model 2) = 0.86

MSE(Model 3) = 0.68

MSE(Model 4) = 0

What about predicting new
observations (red crosses)?
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Example of this Inverse Relationship
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Fitting Polynomials Example

x

y

Model 1
Model 2
Model 3
Model 4

• Black model has low
variance, high bias

• Green model has low
bias, but high variance

• Red model and Blue
model have intermediate
bias and variance.

We want to balance these two
quantities.
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Bias vs. Variance
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Fitting Polynomials Example

x

y

Model 1
Model 2
Model 3
Model 4

Variance

Squared Bias

Risk

Model Complexity ↗

The best estimator is at the vertical black line (minimum of Risk)
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Training and test error
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A better notion of risk

What we are missing is that the same data that goes into training
β̂ goes into testing β̂ via MSE(β̂)

What we really want is to be able to predict a new observation well

Let (X0,Y0) be a new observation that has the same properties as
our original sample Dn, but is independent of it.
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A better notion of risk

It turns out that

E
∣∣∣∣∣∣Xβ̂ − Xβ

∣∣∣∣∣∣2
2
is the “same” as E(Y0 − X>0 β̂)2

(“same” means that it isn’t equal, but behaves the same)

Of course,
pred(β̂) = E(Y0 − X>0 β̂)2

still depends on information that is unavailable to the data analyst
(in particular, the joint distribution of X0 and Y0)
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Training and test split
We can mimic

pred(β̂) = E(Y0 − X>0 β̂)2

by splitting the sample Dn into two parts

The total sample (Dn)

Training

Dtrain

Test

Dtest

Where

• Every observation from Dn is in Dtrain or Dtest

• No observation is in both
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Training and test split

Now, instead of trying to compute

pred(β̂) = E(Y0 − X>0 β̂)2,

we can instead

• train β̂ on the observations in Dtrain

• compute the MSE using observations in Dtest to test

Example: Commonly, this might be 90% of the data in Dtrain

and 10% of the data in Dtest

Question: Where does the terminology training error come from?
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Training and test split

This approach has major pros and cons

• Pro: This is a fair estimator of risk as the training and test
observations are independent

• Con: We are sacrificing power by using only a subset of the
data for training
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Other estimates of risk

There are many candidates for estimating pred

• AIC (Akaike information criterion)

• AICc (AIC with a correction)

• BIC (Bayesian information criterion)

• Mallows Cp

Don’t worry overly much about the differences between each of
these criteria.
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What Makes a Good Estimator of β?

For example:

pred(β̂) ≈ AIC(β̂) = −2`(β̂) + 2|β̂|.

Here,

• ` is the log likelihood under Gaussian errors
(This term is effectively MSE)

• |β̂| is the length of the estimator (the number of parameters)

For the polynomial example:

|β̂| =


2 for Model 1

4 for Model 2

11 for Model 3

101 for Model 4
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What Makes a Good Estimator of β?

MSE(Model 1) = 0.98

MSE(Model 2) = 0.86

MSE(Model 3) = 0.68

MSE(Model 4) = 0

and |β̂| =


2 for Model 1

4 for Model 2

11 for Model 3

101 for Model 4

AIC(Model 1) = 0.98 + 2 ∗ 2 = 4.98
AIC(Model 2) = 0.86 + 2 ∗ 4 = 8.86
AIC(Model 3) = 0.68 + 2 ∗ 11 = 22.68
AIC(Model 4) = 0 + 2 ∗ 101 = 202.000

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

Fitting Polynomials Example

x

y

Model 1
Model 2
Model 3
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What Makes a Good Estimator of β?
I’ll include the form of each of the criteria for future reference,
formulated for regression:

AIC(β̂) = MSE(β̂) + 2|β̂|

AICc(β̂) = AIC +
2|β̂|(|β̂|+ 1)

n − |β̂| − 1

BIC(β̂) = MSE(β̂) + |β̂| log n

Cp(β̂) =
MSE

σ̂2
− n + 2|β̂|.

Note:

• As long as log n ≥ 2 (which is effectively always), BIC picks a
smaller model than AIC.
• As n ≥ |β̂|+ 1, AICc always picks a smaller model than AIC.
• AICc is a correction for AIC. You should use AICc in

practice/research if available. In this class we’ll just use AIC
so as not to get bogged down in details. 31



Finally, we can answer: What Makes a Good
Estimator of β?

A good estimator is one that minimizes one of those criteria. For
example:

β̂good = argmin
β̂

AIC (β̂).

Algorithmically, how can we compute β̂good? One way is to
compute all possible models and their associated AIC scores.

However, this is a lot of models...
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Caveat

In order to avoid some complications about AIC and related
measures, I’ve over-simplified a bit

Sometimes you’ll see AIC as written in three ways:

• AIC = log(MSE/n) + 2|β̂|
• AIC = MSE + 2|β̂|
• AIC = MSE + 2|β̂|MSE/n

The reasons to prefer one over the other is too much of a
distraction for this class

If you’re curious, I can set up a special discussion outside of class
to discuss this.
(The following few slides are optional and get at the motivation behind ‘information

criteria’ based methods)
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Comparing probability measures
Information criteria come from many different places

Suppose we have data Y that comes from the probability density
function f .

What happens if we use the probability density function g instead?

One central idea is Kullback-Leibler discrepancy2

KL(f , g) =

∫
log

(
f (y)

g(y)

)
f (y)dy

∝ −
∫

log(g(y))f (y)dy (ignore term without g)

= −E[log(g(Y ))]

This gives us a sense of the loss incurred by using g instead of f .
2This has many features of a distance, but is not a true distance as

KL(f , g) 6= KL(g , f ).
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Kullback-Leibler discrepancy

Usually, g will depend on some parameters, call them θ, and write
g(y ; θ).

Example: In regression, we can specify f ∼ N(X>β, σ2) for a
fixed (true)3β, and let g ∼ N(X>θ, σ2) over all θ ∈ Rp

As KL(f , g) = −E[log(g(Y ; θ))], we want to minimize this over θ.

Again, f is unknown, so we minimize − log(g(y ; θ)) instead. This
is the maximum likelihood value

θ̂ML = arg max
θ

g(y ; θ)

3We actually don’t need to assume things about a true model nor have it be
nested in the alternative models.

35



Kullback-Leibler discrepancy

Now, to get an operational characterization of the KL divergence
at the ML solution

−E[log(g(Y ; θ̂ML))]

we need an approximation (don’t know f , still)

This approximation is exactly AIC:

AIC = −2 log(g(Y ; θ̂ML)) + 2|θ̂ML|

Example: If log(g(y ; θ)) = n
2 log(2πσ2) + 1

2σ2 ||y − Xθ||22, as

in regression, and σ2 is known, Then using θ̂ =
(X>X)−1X>y ,

AIC ∝ MSE/σ2 + 2p
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