REGRESSION II: MODEL SELECTION -APPLIED MULTIVARIATE ANALYSIS-

Lecturer: Darren Homrighausen, PhD

Computing a Good Estimator of β ?

On the previous slides, we proposed a sensible solution to picking a good model:

Solution: Minimize AIC (or another related criterion) to get $\hat{eta}_{\mathrm{good}}$

However, this doesn't completely solve the problem.

How can we do the necessary minimization?

Data Analysis Example: Prostate Cancer Data

Here is how to read in the data, along with a description of the variables:

```
prostate = read.table('prostate.data',header=T)
# Variables are:
# lcavol: log cancer volume
# lweight: log prostate weight
# age: patient age
# lbph: log of amount of benign prostate hyperplasia
# svi: seminal vesicle invasion (0,1 valued)
# lcp: log of capsular penetration
# gleason: Gleason score
# pgg45: Percent of Gleason scores 4 or 5
# lpsa: log prostate specific antigen (response)
```

GOAL

We wish to find which ones (if any) of the explanatory variables are important. To do this, we can fit the full linear model:

```
> fit.lm = lm(lpsa~.,data=prostate)
> summary(fit.lm)
         Estimate Std. Error t value Pr(>|t|)
(Intercept)
         0.181561 1.320568 0.137 0.89096
lcavol 0.564341 0.087833 6.425 6.55e-09 ***
lweight 0.622020 0.200897 3.096 0.00263 **
        -0.021248 0.011084 -1.917 0.05848 .
age
1bph
       0.096713 0.057913 1.670 0.09848 .
svi
         lcp
        -0.106051 0.089868 -1.180 0.24115
gleason
        0.049228  0.155341  0.317  0.75207
pgg45
```

However, generally some of the predictors are unimportant.

What happens if we estimate too many parameters?

REPERCUSSIONS OF ESTIMATING TOO MANY PARAMETERS

Suppose we have independent random variables Z_1, Z_2, \dots, Z_p all with variance σ^2 .

If we form the sum of all of the Z's

$$S = \sum_{j=1}^{p} Z_j = Z_1 + Z_2 + \dots + Z_p$$

then

$$\mathbb{V}S = \sum_{j=1}^{p} \mathbb{V}Z_{j} = \sum_{i=1}^{p} \sigma^{2} = p\sigma^{2}$$

Conclusion: The more random variables we add to the sum, the higher the variance.

REPERCUSSIONS OF ESTIMATING TOO MANY PARAMETERS

Remember: $pred = variance + bias^2$

So, if we want to make good predictions with sums, we need to make sure we are only including important parameters

Linear Regression:

$$\hat{\beta} = \operatorname*{argmin}_{\beta} ||Y - \mathbb{X}\beta||_2^2 = (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{X}^\top Y$$

To see this, note:

$$\nabla_{\beta} ||Y - \mathbb{X}\beta||_{2}^{2} = \nabla_{\beta} (-2Y^{\top} \mathbb{X}\beta + \beta^{\top} \mathbb{X}^{\top} \mathbb{X}\beta)$$
$$= -2Y^{\top} X + 2\beta^{\top} \mathbb{X}^{\top} \mathbb{X} \stackrel{set}{=} 0$$

solve and show the Hessian is positive definite...

(or demonstrate convexity)

REPERCUSSIONS OF ESTIMATING TOO MANY PARAMETERS

Important Connection: Regression is just a fancy sum!.

$$\hat{\beta} = \operatorname*{argmin}_{\beta} || Y - \mathbb{X}\beta ||_2^2 = (\mathbb{X}^\top \mathbb{X})^{-1} \mathbb{X}^\top Y$$

For instance:

$$\mathbb{X}^{\top}Y = \begin{bmatrix} \sum_{i=1}^{n} \mathbb{X}_{i1} Y_{i} \\ \sum_{i=1}^{n} \mathbb{X}_{i2} Y_{i} \\ \vdots \\ \sum_{i=1}^{n} \mathbb{X}_{ip} Y_{i} \end{bmatrix} \in \mathbb{R}^{p} \Rightarrow \text{There are } p \text{ summands}$$

One idea is, as the name suggests, to compute all possible models and report the model with the smallest score. R has a very good package for doing this: leaps. Let's define the following¹

```
Y = prostate$1psa
X = prostate[,names(prostate)!=c('lpsa','train')]
n = length(Y)
p = ncol(X)
```

```
library(leaps)
leaps.out = leaps(x = X,y = Y,method='r2',nbest=40)
> names(leaps.out)
[1] "which" "label" "size" "r2"
```

The R object 'leaps.out' contains the R^2 for each model of size 2, 3, 4, up to 9. For example, a model of size 4 would be:

$$\mathbb{E}Y_i = \beta_0 + \beta_1 |\text{lcavol}_i + \beta_2 |\text{svi}_i + \beta_3 |\text{lcp}_i|$$

The function leaps is designed to efficiently compute a bunch of models. However, it doesn't actually do any model selection.

It does report R^2 , which is defined to be:

$$R^2 = 1 - \frac{\text{MSE}}{\text{total sum of squares}} \iff \text{MSE} = \text{SST}(1 - R^2)$$

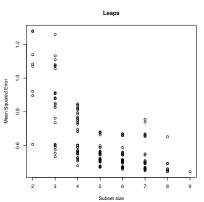
We can use this to form the criterion we are interested in using

Note:

- MSE in this expression isn't divided by *n*, we don't need to do that for this class
- SST is the total sums of squares (residuals around grand mean)

Using this definition of R^2 :

```
SStot = sum( (Y-mean(Y))^2 )
MSE = SStot*(1 - leaps.out$r2)
```



- Note how MSE is strictly decreasing for larger models. This is the same behavior as we noticed in the polynomial example
- We can restrict our attention to the 8 models that have the smallest MSE for a given size (Why?)

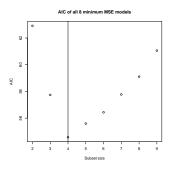
ALL SUBSETS REGRESSION: FIRST WAY

We can compute the AIC for each of the 8 MSE minimizing models using this code:

Here, we have used the fact that another way to write AIC is:

$$AIC(\hat{\beta}) = MSE + 2|\hat{\beta}|$$

ALL SUBSETS REGRESSION: FIRST WAY



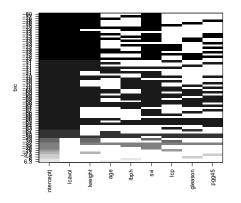
Here is the best model:

```
> leaps.out$which[leaps.out$size == 4,][1,]
    1    2    3    4    5    6    7    8
TRUE TRUE FALSE FALSE TRUE FALSE FALSE
> names(X)[leaps.out$which[leaps.out$size == which.min(AIC)+1,]
[1] "lcavol" "lweight" "svi"
```

This corresponds to picking: Icavol, Iweight, svi

ALL SUBSETS REGRESSION: A SECOND WAY

```
leaps.plot = regsubsets(Y~.,data=X, nbest=10)
plot(leaps.plot,scale='bic')
```



The plot is ordered from best to worst (top to bottom)

ALL SUBSETS REGRESSION: A BIG PROBLEM (LITERALLY)

If there are p possible predictors (the previous example had 8), then there are $2^p - 1$ possible models (the previous example had 255).

For instance, if p=40 (which is considered a small problem these days), then the number of possible models is

$$2^{40} - 1 \approx 1,099,512,000,000 \Rightarrow \text{More than 1 trillion!}$$

This is huge!

If p = 265, then the number of possible models is the same as the number of atoms in the universe²

We need a way to sift through the models in a computationally feasible way

FORWARD SELECTION

A good way to do this sifting is through greedy algorithms.

If we can't look at all possible models, we can do the following instead:

- 1. Find the best possible one predictor model³
- 2. Keep that predictor and find the best possible two predictor model given the original predictor is selected.
- Keep both those predictors and find the best possible three predictor model given the first two selected.

:

 Keep going until adding another predictor no longer reduces AIC⁴.

³All of these steps assume an intercept is included and always retained ⁴Some programs/people will advocate using F-tests for the selection criterion. There are reasons to prefer either, but generally choose AIC.

```
> \text{null} = \text{lm}(Y^1, \text{data}=X)
> full = lm(Y^{-}, data=X)
> step(null,scope=list(lower=null,upper=full),
           direction='forward')
Start: AIC=28.84
         Df Sum of Sq RSS
                                 AIC
        1
               69.003 58.915 -44.366
+ lcavol
+ svi 1 41.011 86.907 -6.658
+ lcp 1 38.528 89.389 -3.926
+ lweight 1 24.019 103.899 10.665
+ pgg45
            22.814 105.103 11.783
+ gleason 1 17.416 110.502 16.641
       1 4.136 123.782 27.650
+ lbph
               3.679 124.239 28.007
+ age
                      127.918 28.838
<none>
```

```
Step: AIC=-44.37
Y ~ lcavol
```

		Df	Sum of Sq	RSS	AIC
+	lweight	1	7.1726	51.742	-54.958
+	svi	1	5.2375	53.677	-51.397
+	lbph	1	3.2658	55.649	-47.898
+	pgg45	1	1.6980	57.217	-45.203
<none></none>				58.915	-44.366
+	lcp	1	0.6562	58.259	-43.452
+	gleason	1	0.4156	58.499	-43.053
+	age	1	0.0025	58.912	-42.370

Step: AIC=-54.96

Step: AIC=-63.18

```
Step: AIC=-63.23
Y ~ lcavol + lweight + svi + lbph

Df Sum of Sq RSS AIC
+ age 1 1.15879 44.437 -63.723
<none> 45.595 -63.226
+ pgg45 1 0.33173 45.264 -61.934
+ gleason 1 0.20691 45.389 -61.667
+ lcp 1 0.10115 45.494 -61.441
```

```
Step: AIC=-63.72

Y ~ lcavol + lweight + svi + lbph + age

Df Sum of Sq RSS AIC

<none> 44.437 -63.723

+ pgg45  1 0.66071 43.776 -63.176

+ gleason 1 0.47674 43.960 -62.769

+ lcp 1 0.13040 44.306 -62.008
```

Conclusion: Forward selection with AIC suggests we keep lcavol, lweight, age, lbph, and svi

```
> out = step(full,direction='backward')
Start: AIC=-60.78
Y ~ lcavol + lweight + age + lbph + svi + lcp +
     gleason + pgg45
        Df Sum of Sq RSS AIC
- gleason 1 0.0491 43.108 -62.668
- pgg45 1 0.5102 43.569 -61.636
- lcp 1 0.6814 43.740 -61.256
<none>
                    43.058 -60.779
- lbph 1 1.3646 44.423 -59.753
- age 1 1.7981 44.857 -58.810
- lweight 1 4.6907 47.749 -52.749
- svi 1 4.8803 47.939 -52.364
- lcavol 1 20.1994 63.258 -25.467
```

```
Step: AIC=-62.67
Y ~ lcavol + lweight + age + lbph + svi + lcp + pgg45
        Df Sum of Sq RSS AIC
- lcp
        1 0.6684 43.776 -63.176
<none>
                   43.108 -62.668
- pgg45 1 1.1987 44.306 -62.008
- lbph 1 1.3844 44.492 -61.602
- age 1 1.7579 44.865 -60.791
- lweight 1 4.6429 47.751 -54.746
- svi 1 4.8333 47.941 -54.360
- lcavol 1 21.3191 64.427 -25.691
```

Conclusion: Backward selection with AIC suggests we keep lcavol, lweight, age, lbph, and svi

```
> out = step(null,scope=list(upper=full),
             direction='both')
Start: AIC=28.84
         Df Sum of Sq RSS
                               ATC
        1
              69.003 58.915 -44.366
+ lcavol
+ svi 1 41.011 86.907 -6.658
+ lcp
         1 38.528 89.389 -3.926
+ lweight 1 24.019 103.899 10.665
+ pgg45
           22.814 105.103 11.783
+ gleason 1 17.416 110.502 16.641
+ lbph
           4.136 123.782 27.650
+ age
              3.679 124.239 28.007
<none>
                    127.918 28.838
```

```
Step: AIC=-44.37
Y ~ lcavol
```

	Df	Sum of Sq	RSS	AIC
+ lweight	1	7.173	51.742	-54.958
+ svi	1	5.237	53.677	-51.397
+ lbph	1	3.266	55.649	-47.898
+ pgg45	1	1.698	57.217	-45.203
<none></none>			58.915	-44.366
+ lcp	1	0.656	58.259	-43.452
+ gleason	1	0.416	58.499	-43.053
+ age	1	0.003	58.912	-42.370
- lcavol	1	69.003	127.918	28.838

```
Step: AIC=-54.96
Y ~ lcavol + lweight
```

	\mathtt{Df}	Sum of Sq	RSS	AIC
+ svi	1	5.174	46.568	-63.177
+ pgg45	1	1.816	49.926	-56.424
<none></none>			51.742	-54.958
+ lcp	1	0.819	50.923	-54.506
+ gleason	1	0.716	51.026	-54.311
+ age	1	0.646	51.097	-54.176
+ lbph	1	0.444	51.298	-53.794
- lweight	1	7.173	58.915	-44.366
- lcavol	1	52.157	103.899	10.665

Step: AIC=-63.18

```
Y ~ lcavol + lweight + svi
        Df Sum of Sq RSS AIC
+ lbph
             0.9730 45.595 -63.226
<none>
                    46.568 -63.177
+ age 1 0.6230 45.945 -62.484
+ pgg45 1 0.5007 46.068 -62.226
+ gleason 1 0.3445 46.224 -61.898
+ lcp
         1 0.0694 46.499 -61.322
- svi 1 5.1737 51.742 -54.958
- lweight 1 7.1089 53.677 -51.397
- lcavol 1 24.7058 71.274 -23.893
```

```
Step: AIC=-63.23
Y ~ lcavol + lweight + svi + lbph
        Df Sum of Sq RSS AIC
        1 1.1588 44.437 -63.723
+ age
<none>
                    45.595 -63.226
- lbph 1 0.9730 46.568 -63.177
+ pgg45 1 0.3317 45.264 -61.934
+ gleason 1 0.2069 45.389 -61.667
+ lcp 1 0.1012 45.494 -61.441
- lweight 1 3.6907 49.286 -57.675
- svi 1 5.7027 51.298 -53.794
- lcavol 1 24.9384 70.534 -22.906
```

```
Step: AIC=-63.72
Y ~ lcavol + lweight + svi + lbph + age
        Df Sum of Sq RSS AIC
<none>
                    44.437 -63.723
- age 1 1.1588 45.595 -63.226
+ pgg45 1 0.6607 43.776 -63.176
+ gleason 1 0.4767 43.960 -62.769
- lbph 1 1.5087 45.945 -62.484
+ lcp 1 0.1304 44.306 -62.008
- lweight 1 4.3140 48.751 -56.735
- svi 1 5.8509 50.288 -53.724
- lcavol 1 25.9427 70.379 -21.119
```

Conclusion: Stepwise selection with AIC suggests we keep lcavol, lweight, age, lbph, and svi

A COMPARISON

Summary of results:

- All Subsets (BIC): Icavol, Iweight, svi
- All Subsets (AIC): Icavol, Iweight, svi
- Forward Selection: Icavol, Iweight, age, Ibph, svi
- Backward Selection: Icavol, Iweight, age, Ibph, svi
- Stepwise Selection: Icavol, Iweight, age, Ibph, svi

Note that

- For all subsets, both AIC and BIC chose the same model
- All the greedy approaches selected the same model for this data

Important: None of this is not necessarily the case!

AN ALTERNATE SELECTION METHOD IN R

Inside the package leaps, the function regsubsets⁵ can be used to do:

- forwards
- backwards
- all subsets

It uses Mallows Cp as the criterion instead of AIC

Let's investigate it further

 $^{^5}$ The nice thing about regsubsets over step is that it doesn't need to fit the full model for scope.

AN ALTERNATE SELECTION METHOD IN R: FORWARD

```
library(leaps)
regfit.for = regsubsets (x = X, y = Y, nvmax = 19,
                     method ="forward")
regfit.for.sum = summary(regfit.for)
> regfit.for.sum$which[which.min(regfit.for.sum$cp),]
(Intercept)
                lcavol
                           lweight
                                                  lbph
                                           age
                                          TRUE
      TRUE
                  TRUE
                              TRUE
                                                  TRUE
       svi
                   lcp gleason
                                       pgg45
      TRUE
                 FALSE
                             FALSE.
                                         FALSE
```

AN ALTERNATE SELECTION METHOD IN R: BACKWARD

```
library(leaps)
regfit.bac = regsubsets ( x = X,y = Y, nvmax =19,
                           method ="backward")
regfit.bac.sum = summary(regfit.bac)
> regfit.bac.sum$which[which.min(regfit.bac.sum$cp),]
(Intercept)
                lcavol
                           lweight
                                           age
                                                   lbph
      TRUE
                  TRUE
                              TRUE.
                                          TRUE
                                                   TRUF.
                   lcp gleason
       svi
                                       pgg45
      TRUE
                 FALSE
                             FALSE
                                         FALSE
```

WARNING: YOU MIGHT BE CLIMBING...

