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Another way to choose the model

Let (X0,Y0) be a new observation that has the same properties as
our sample Dn, but is independent of it.

Remember (prediction) risk: pred(β̂) = E(Y0 − X>0 β̂)2

The idea is to find a β̂ from the sample Dn and then predict at a
new observation to see how good of a job we’ve done.

We don’t have any such new observation

So, we use some approximations to pred instead (AIC, BIC, etc.).
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An intuitive idea

What if instead we tried a different idea?

Let’s set aside one observation and predict it

Example: Set aside (X1,Y1) and fit β̂(1) on (X2,Y2), . . . , (Xn,Yn)

(The notation β̂(1) just symbolizes leaving out the first observation before fitting β̂)

Now, let’s look at the (test) MSE of β̂(1)

MSE1 = (Y1 − X>1 β̂
(1))2
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An intuitive idea

As the left off data point is independent of the data points used
for estimation,

EMSE1 = pred(β̂Dtrain
) ≈ pred(β̂Dn)

Where

• Dtrain = {(X2,Y2), . . . , (Xn,Yn)}
• Dtest = {(X1,Y1)}
• β̂Dtrain

is β̂ trained only with observations in Dtrain

• β̂Dn = β̂ is the estimator trained on all the data
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An intuitive idea

Why stop there? We can do the same thing with the second
observation as well:

MSE2 = (Y2 − X>2 β̂
(2))2

Repeating the notation as for MSE1....
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An intuitive idea

EMSE2 = pred(β̂Dtrain
) ≈ pred(β̂Dn)

Where

• Dtrain = {(X1,Y1), (X3,Y3) . . . , (Xn,Yn)}
• Dtest = {(X2,Y2)}
• β̂Dtrain

is β̂ trained only with observations in Dtrain

• β̂Dn = β̂ is the estimator trained on all the data
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Cross-Validation

We can use this idea to form an estimate of pred

It is known as (leave-one-out) cross-validation1

CV(β̂) =
1

n

n∑
i=1

MSEi =
1

n

n∑
i=1

(Yi − X>i β̂
(i))2.

Now, we have another risk estimate minimize CV

1We’ll get to the leave-one-out part in a moment.
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Let’s look at CV in action
I wrote two functions, which are in the file 1 CVfunc.r (check the
website) for doing model selection with cross-validation.

Here is an example on the Prostate data:

source(‘1_CVfunc.r’)

validationSets = 1:n

cv = CVfunc(X,Y,n,validationSets,models)
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Let’s look at CV in action

Results:

> models[which.min(cv),]

1 2 3 4 5 6 7 8

TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE

> names(X)[models[which.min(cv),]]

[1] "lcavol" "lweight" "lbph" "svi"

In this case, we have come up with a model in between all subsets
regression and its greedy approximations.
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More general cross-validation procedures

There are two strong disadvantages to cross-validation as we
defined it:

CV(β̂) =
1

n

n∑
i=1

(Yi − X>i β̂
(i))2

These are:

• It is computationally demanding (we need to fit n different
times).

• It is an unbiased estimator of pred(β̂n−1)
(which means it can be very high variance)
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K-Fold cross-validation

A commonly used compromise is to randomly divide your data into
K groups.

Let v1, . . . , vK correspond to these groups.

For Example: If we have data Z1,Z2,Z3,Z4,Z5, then we can
have K = 2, and v1 = {2, 5} and v2 = {1, 3, 4}

Then, we can form

CVK (β̂) =
1

K

K∑
k=1

1

|vk |
∑
i∈vk

(yi − X>i β̂
(vk ))2.

(For CV, K = ?n and vi =?{i})
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Retrospective summary

In the previous slides, we took a set of p predictors and reduced
them to smaller set of variables using AIC, AICc, BIC, CV,....

There are three main reasons for this:

• Interpretability: It is much easier (and convincing) to decide
that a few variables are the ‘main’ contributors to a response
variable of interest.

• Prediction accuracy: Including larger number of variables
reduces bias but increases variance. If we include too many,
we can’t predict well.

• Parsimony: Some variables are unrelated to the response in
any meaningful way and we would like to remove them.
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Regularization
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Regularization

Another way to control bias and variance is through regularization
or shrinkage.

The idea is to make your estimates of β ‘smaller’, rather than set
them to zero
(which is what all subsets does)
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Some optimization terms

Optimization problem

Objective

Example:

||Y − Xβ||22

Constraint

Example:

≤ 10 nonzero entries in β

A (contrained) optimization problem is phrased as

min `(β) subject to C (β)

where

• `(β) is the objective function
• C (β) is the constraint
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Regularization

One way to do this for regression is via constraining squared error

β̂ridge,t = argmin
||β̃||22≤t

||Y − Xβ̃||22

for any t ≥ 0.

This procedure is called ridge regression

Compare this to least squares

β̂LS = argmin
β̃∈Rp

||Y − Xβ̃||22
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Geometry of ridge regression in R2
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Ridge regression
An equivalent way to write

β̂ridge,t = argmin
||β||22≤t

||Y − Xβ||22 (1)

is in the Lagrangian form

β̂ridge,λ = argmin
β
||Y − Xβ||22 + λ||β||22. (2)

For every λ′ there is a unique t ′ (and vice versa) that makes

β̂ridge,λ′ = β̂ridge,t′

Observe:

• λ = 0 (or t =∞) makes β̂ridge,λ=0 = β̂LS

• Any λ > 0 (or t <∞) penalizes larger values of β, effectively
shrinking them.

Note: λ and t are known as tuning parameters
18



Ridge regression path
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Regularization and Rescaling
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Least squares is invariant to rescaling

Example: Let’s multiply our design matrix by a factor of 10
to get X̃ = 10X. Then:

β̃OLS = (X̃>X̃)−1X̃>Y =
1

10
(X̃>X̃)−1X̃>Y =

β̂OLS

10

So, multiplying our data by ten just results in our estimates being
reduced by one tenth.

Hence, any prediction is left unchanged:

X̃β̃OLS = Xβ̂OLS

This means, for instance, if we have a covariate measured in miles,
then we will get the “same” answer if we change it to kilometers
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Least squares is invariant to rescaling:
example

n = 20

set.seed(1)

X = runif(n,0,1)

Y = X*1.5 + rnorm(n,0,.25)

Xtilde = 2*X

Ytilde = Y - mean(Y)
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Least squares is invariant to rescaling:
example

>summary(lm(formula = Y ~ X))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1065 0.1265 0.842 0.411

X 1.3341 0.2036 6.554 3.7e-06 ***

> summary(lm(formula = Y ~ Xtilde))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1065 0.1265 0.842 0.411

Xtilde 0.6671 0.1018 6.554 3.7e-06 ***

> summary(lm(formula = Ytilde ~ Xtilde))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.7407 0.1265 -5.857 1.51e-05 ***

Xtilde 0.6671 0.1018 6.554 3.70e-06 ***
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Ridge regression is not invariant to rescaling
(See next few slides for how to compute the ridge solution via SVD as below)

u = X/sqrt(sum(X**2))

d = sqrt(sum(X**2))

lam = 1

betaHat = (d/(d+lam))*u%*%Y

> print(betaHat)

[,1]

[1,] 3.03864

u = Xtilde/sqrt(sum(X**2))

d = sqrt(sum(Xtilde**2))

lam = 1

betaTilde = (d/(d+lam))*u%*%Y

> print(betaTilde)

[,1]

[1,] 7.004142

> print(betaHat*2)

[,1]

[1,] 6.07728
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Ridge regression is not invariant to rescaling

So, we need to choose a scale before we fit.

The agreed upon scale is to make each column of X have

• Zero (sample) mean and

• (sample) standard deviation 1.

This can be easily done in R via the ‘scale’ function:

X = scale(X,center=T,scale=T)
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The scale function

Note: A nice part of about the scale function is that it keeps the
scalings:

X = runif(20,0,1)

X = scale(X,center=T,scale=T)

> attributes(X)

$dim

[1] 20 1

$‘scaled:center‘

[1] 0.5551671

$‘scaled:scale‘

[1] 0.2861179

> attributes(X)$’scaled:center’

[1] 0.5551671
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Ridge regression
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Ridge regression

Recall: The least squares solution can be written

β̂LS = (X>X)−1X>Y

It turns out through differential calculus, we can write out the
ridge regression solution as well:

β̂ridge,λ = (X>X + λI )−1X>Y

Quite similar!

However, the λ can make all the difference..
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Regularization - Ridge Regression
Using the SVD2 (X = UDV>), we can look even deeper.

β̂LS = (X>X)−1X>Y = VD−1U>Y =

p∑
j=1

vj

(
1

dj

)
u>j Y

β̂ridge,λ = (X>X+ λI )−1X>Y = V (D2 + λI )−1DU>Y =

p∑
j=1

vj

(
dj

d2
j + λ

)
u>j Y

Ridge shrinks the data by an additional factor of λ

To see this, note:

(X>X)−1X> = (VD U>U︸ ︷︷ ︸
=I

DV>)−1VDU>

= (VD2V>)−1VDU>

= VD−2 V>V︸ ︷︷ ︸
=I

DU> = VD−1U>

2This is after centering/scaling
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Ridge Regression: Computation

There are several ways to compute ridge regression

We can follow any conventional least squares solving technique
(i.e.: QR factorization, Cholesky Decomposition, SVD,...):

(X>X + λI )β = X>Y

This can be computed via many techniques, for instance the solve
function in R

Ax = b ⇒ solve(A, b)
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Ridge Regression: Computation

Alternatively, we can actually solve it using lm in R if we make the
following augmentation

Ỹ =



Y1
...
Yn

0
...
0


∈ Rn+p and X̃ =

[
X√
λI

]

lm(tildeY ~ ., data = Xtilde)

(To see this, multiply out (X̃>X̃)−1X̃>Ỹ and note that it equals (X>X + λI )−1X>Y )
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Ridge Regression: Recap

Important:

• As the constraint set is a sphere, each direction is treated
equally. You should standardize your coefficient before fitting.

• Likewise, if included, don’t penalize the intercept. If the
sample means of the covariates are zero, then make the
response have mean zero as well (and don’t include intercept)

This means either
I solve

min
β
||Y − (β01 + Xβ)||22 + λ ||β||22

I or standardize X and center Y by Y
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Ridge Regression with glmnet
Another way in R to do ridge regression is through glmnet

install.packages(’glmnet’)

library(glmnet)

Y = prostate$lpsa

X = as.matrix(prostate[,names(prostate)!=c(’lpsa’,’train’)])

X.df = prostate[,names(prostate)!=c(’lpsa’,’train’)]

ridge.out = glmnet(x=X,y=Y,alpha=0)

Note: Turning X into a matrix data structure is crucial!
(Note that for lm, the opposite is true, X must be a data.frame)

> ridge.out = glmnet(x=X.df,y=Y,alpha=0)

Error in elnet(x, is.sparse, ix, jx, y, weights, offset, ...

(list) object cannot be coerced to type ’double’
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Ridge Regression with glmnet

> names(ridge.out)

[1] "a0" "beta" "df" "dim" "lambda"

[6] "dev.ratio" "nulldev" "npasses" "jerr" "offset"

[11] "call" "nobs"

> length(ridge.out$lambda)

[1] 100

> ridge.out$lambda[c(1,2,3,4,99,100)]

[1] 843.42743826 768.49966923 700.22827669 638.02192650

[5] 0.09256606 0.08434274
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Ridge Regression with glmnet
To get the ridge solution at a particular λ value, say 10, do not do:

ridge.out = glmnet(x=X,y=Y,alpha=0,lambda=10)

The numerical properties of glmnet require running over entire grid.

Instead, use the coef or predict functions

> coef(ridge.out,s=10)

9 x 1 sparse Matrix of class "dgCMatrix"

1

(Intercept) 1.535925340

lcavol 0.064472545

lweight 0.106714247

age 0.001718621

lbph 0.012833216

svi 0.135482215

lcp 0.036522691

gleason 0.044727284

pgg45 0.001325149
35



Ridge Regression with glmnet

pred.ridge = predict(ridge.out,X,s=.01)

plot(X.df$lcavol,pred.ridge,ylim=c(-5,5),pch=16,col=’blue’)

points(X.df$lcavol,Y,col=’red’,pch=17)
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Choosing λ
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Ridge Regression: picking the tuning
parameter

The crucial choice with regularization is how large to set the
tuning parameter λ.

While we can use AIC or BIC for this, conventionally people use
cross-validation instead.

Think of CVK as a function of λ, and pick its minimum:

λ̂ = argmin
λ≥0

CVK (λ)

and we will use the estimator β̂ridge,λ̂
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Ridge Regression: CV

We can do this easily with glmnet via the function cv.glmnet

X = as.matrix(X)

> ridge.cv = cv.glmnet(x=X,y=Y,alpha=0)

> names(ridge.cv)

[1] "lambda" "cvm" "cvsd" "cvup"

[5] "cvlo" "nzero" "name" "glmnet.fit"

[9] "lambda.min" "lambda.1se"

> ridge.out = ridge.cv$glmnet.fit
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Ridge Regression: CV

lambda.hat = ridge.cv$lambda[which.min(ridge.cv$cvm)]

plot(ridge.cv$lambda,ridge.cv$cvm,

xlab=’lambda’,ylab=’CV error’,main=’Ridge’,type=’l’)

abline(v=lambda.hat)

> print(log(lambda.hat))

[1] -2.243919
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Ridge regression: CV
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Some comments about glmnet

Some further details

• Note that in this figure:
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many solutions have almost the same CV error

In fact, since CV is a pred estimate, it is random

• The lower end point of the grid is somewhat arbitrary chosen
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Some comments about glmnet

The function cv.glmnet comes with a plotting function

ridge.cv = cv.glmnet(x=X,y=Y,alpha=0)

plot(ridge.cv)
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Some comments about glmnet
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• The left-most dashed, vertical line occurs at the CV minimum
• The right-most dashed, vertical line is the

I largest value of λ ...
I such that the error is within one standard-error of the minimum

(the so called one-standard-error rule. We’ll see this is more important with a

related method soon)
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Some comments about glmnet
Alternatively, you can demand a ‘significant’ amount of CV
reduction to discard full model
(By full model, I mean the model with all covariates)

plot(log(ridge.cv$lambda),ridge.cv$cvm,

xlab=’lambda’,ylab=’CV error’,main=’Ridge’,

type=’l’,ylim=c(.4,1.2))

lines(log(ridge.cv$lambda),ridge.cv$cvup,col="red",lty=2)

lines(log(ridge.cv$lambda),ridge.cv$cvlo,col="blue",lty=2)
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Some comments about glmnet

The way that glmnet works is to

1. form a grid of λ values,

2. find the cross-validation error for each ridge solution on that
grid

3. compute the minimum cross-validated λ: λ̂

4. report β̂ridge,λ̂ as the final solution

The important piece is that the final solution depends on which
grid we choose
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Some comments about glmnet

Unfortunately, there is not a good way to define both end points of
this grid
(We will see later that for the lasso the grid is easier to define, but can have some of

the same problems)

Important: The minimum value of the grid is chosen arbitrarily
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Some comments about glmnet
Example of a bad minimum
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How to fix it:

ridge.cv = cv.glmnet(x=X,y=Y,alpha=0)

min.lambda = min(ridge.cv$lambda)

lambda.new = seq(min.lambda*250,min.lambda*.001,length=1000)

ridge.cv = cv.glmnet(x=X,y=Y,alpha=0,lambda=lambda.new)

lambda.hat = ridge.cv$lambda[which.min(ridge.cv$cvm)]
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Some comments about glmnet

New minimum, after moving λ grid smaller:
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Multicollinearity
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Ridge regression and multicollinearity

Multicollinearity is a phenomenon in which a combination of
predictor variables is extremely similar to another predictor
variable. Some comments:

• A better term that is sometimes used is X is ill-conditioned

• It means that one of its columns is nearly (or exactly) a linear
combination of other columns. This is sometimes known as
‘(numerically) rank-deficient’.

• If X = UDV> is ill-conditioned, then some elements of D are
nearly zero
(remember, D is a diagonal matrix with decreasing entries)

• If we form β̂LS = (X>X)−1X>Y = VD−1U>Y , then we see
that the small entries of D are now huge (due to the inverse).
This in turn creates a huge variance
(Vβ̂LS = (X>X)−1 = VD−2V>)
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Ridge regression and multicollinearity

Ridge Regression fixes this problem by preventing the division by a
near zero number

Example: If a is a really small number, and λ > 0 is another num-
ber, then

1

a
≈ ∞ while

1

a + λ
is much smaller.

To wit, 1/0.0001 = 10, 000, while 1/(0.0001+0.1) ≈ 10

Conclusion: (X>X)−1 can be really unstable, while
(X>X + λI )−1 is not.
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Ridge regression and multicollinearity:
Example

Consider the example of predicting blood pressure from a person’s
weight and body surface area.

blood = read.table(’../data/bloodpress.txt’,header=T)

Y = blood$BP

weight = blood$Weight #persons weight

bsa = blood$BSA

outBoth = lm(Y~bsa+weight)

summary(outBoth)

outBSA = lm(Y~bsa)

summary(outBSA)

outWeight = lm(Y~weight)

summary(outWeight)
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Ridge regression and multicollinearity:
Example

lm(formula = Y ~ bsa + weight)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.653 9.392 0.602 0.555

bsa 11.663 12.125 0.962 0.350

weight -4.793 6.232 -0.769 0.452

lm(formula = Y ~ bsa)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.7971 8.5284 0.328 0.747

bsa 2.3389 0.1792 13.052 1.29e-10 ***

lm(formula = Y ~ weight)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.20531 8.66333 0.255 0.802

weight 1.20093 0.09297 12.917 1.53e-10 ***
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Ridge Regression and Multicollinearity:
Example

This code shows that we are estimating (α̂, β̂) with

out = cv.glmnet(x=cbind(weight,bsa),y=Y,alpha=0,nfolds=4,

lambda=(1:100)/100)

out$lambda[which.min(out$cvm)]

[1] 0.35

> out$glmnet.fit$beta[,which.min(out$cvm)]

weight bsa

0.574 1.1462

β̂ridge,λ̂ = (0.574, 1.1462)>

and

> out$glmnet.fit$a0[which.min(out$cvm)]

s65

6.059

α̂ridge,λ̂ = 6.059
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A comparison
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Ridge Regression: Using the λ

Here is the chosen fit (along with some previous methods):

#for predictor coefficient estimates

ridge.out$glmnet.fit$beta[,which.min(ridge.out$cvm)]

#for intercept

ridge.out$glmnet.fit$a0[which.min(ridge.out$cvm)]

Variable Ridge Full Linear Model Forward and Backward
intercept -0.017 0.181561 0.4947
lcavol 0.474 0.564341 0.543
lweight 0.597 0.622020 0.588
age -0.015 -0.021248 -0.016
lbph 0.083 0.096713 0.101
svi 0.667 0.761673 0.715
lcp -0.025 -0.106051 0
gleason 0.066 0.049228 0
pgg45 0.003 0.004458 0
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Geometry of ridge regression in R2

●

β2

β1

β̂LS
β̂ridge

t
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Can we get the best of both worlds?

To recap:

• Forward, backward, and all subsets regression offer good tools
for model selection.
(but the optimization problem is nonconvex3)

• Ridge regression provides regularization, which trades off bias
and variance and also stabilizes multicollinearity.
(problem is convex, but doesn’t do model selection)

Ridge regression min ||Y− Xβ||22 subject to ||β||22 ≤ t

Best linear min ||Y− Xβ||22 subject to ||β||0 ≤ t
regression model

(||β||0 = the number of nonzero elements in β)

3In fact, it is NP-hard
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An intuitive idea

Ridge regression min ||Y− Xβ||22 subject to ||β||22 ≤ t

Best linear min ||Y− Xβ||22 subject to ||β||0 ≤ t
regression model

(||β||0 = the number of nonzero elements in β)

Best linear Ridge
regression model regression

Computationally Feasible? No Yes
Does Model Selection? Yes No

Can we ‘interpolate’ ||β||2 and ||β||0 to find a method that does
both?
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Geometry of regularization in R2: Convexity
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Geometry of regularization in R2: Convexity
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Geometry of regularization in R2: Model selection
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Geometry of regularization in R2: Model selection

●

β2

β1

●

β2

β1

●

β2

β1

||β||0 ≤ t ||β|| 1
2
≤ t ||β|| 3

4
≤ t

●

β2

β1

●

β2

β1

●

β2

β1

||β||1 ≤ t ||β|| 3
2
≤ t ||β||2 ≤ t

62



Geometry of regularization in R2: Model selection
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Geometry of regularization in R2: Both
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Summary

Convex? Corners?

||β||0 No Yes
||β|| 1

2
No Yes

||β|| 3
4

No Yes

||β||1 Yes Yes X

||β|| 3
2

Yes No

||β||2 Yes No
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The best of both worlds: ||β||1

●

β2

β1

This regularization set...

... is convex (computationally efficient)

... has corners (performs model selection)
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The lasso
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`1-regularized regression

Known as

• ‘lasso’

• ‘basis pursuit’

The estimator satisfies

β̂lasso(t) = argmin
||β||1≤t

||Y− Xβ||22

In its corresponding Lagrangian dual form:

β̂lasso(λ) = argmin
β
||Y− Xβ||22 + λ||β||1
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`1-regularized regression

While the ridge solution can be easily computed

β̂ridge,λ = argmin
β
||Y− Xβ||22 + λ||β||22 = (X>X + λI )−1X>Y

the lasso solution

β̂lasso,λ = argmin
β
||Y− Xβ||22 + λ||β||1 = ??

doesn’t have a closed form solution.

However, as the optimization problem is convex, there exist
efficient algorithms for computing it
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Coefficient path: Ridge vs. Lasso
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Choosing the tuning parameter for lasso

There are two main R implementations for finding β̂lasso,λ

• Using glmnet. Just change the ‘alpha =0’ to ‘alpha =1’, and
you’re lassoing:

lasso.out = glmnet(x=X,y=Y,alpha=1)

• Alternatively, there is the lars package

(Technically, we will talk about a third way, called scaled sparse regression (SSR). It

differs in how the tuning parameter λ is chosen, but still uses the lars algorithm for

minimizing)
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The lasso in R: glmnet

glmnet uses gradient descent to quickly fit the lasso solution

It can...

• handle other likelihoods than Gaussian
(This will become more important when we talk about classification and

generalized linear models (GLM))

• supports/exploits sparse matrices
(We will cover this soon)

• uses warm restarts for the grid of λ to produce more stable
fits/faster computations
(You’ll just have to believe me on this one)
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The lasso in R: lars
The lars approach is a path algorithm
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This means we can exploit the fact that the coefficient profiles are
piecewise linear to:

• not need a grid of λ’s

• make exact computations

To do this in R, we can do:

lasso.lars = lars(X,Y,type=’lasso’)
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Comparison of lars and glmnet

There are two main problems with glmnet

• The same as with ridge, the λ grid can be poorly chosen

(In practice, the λ interval looks like
[
ε||X>Y ||∞, ||X>Y ||∞

)
for a small ε.

Sometimes, this results in finding a boundary solution )

• The gradient descent approach is approximate. Sometimes
the thresh parameter needs to be adjusted to be smaller:

fit = glmnet(X,Y,alpha=1,thresh=1e-16)

There are three main problems with lars

• It is slow(er)

• It doesn’t directly support other likelihoods (such as for doing
classification)

• It doesn’t automatically produce the lasso fit when doing
cross-validation
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Choosing the tuning parameter for lasso

Of course, just like in Ridge, we need a way of choosing this tuning
parameter.

We can just use cross-validation again, though this is still an area
of active research:

Homrighausen, D. and McDonald, D.J. Leave-one-out cross-validation is

risk consistent for lasso, Machine Learning

Homrighausen, D. and McDonald, D.J. Risk consistency of

cross-validation for lasso-type procedures, Journal of Machine Learning

Research

Homrighausen, D. and McDonald, D.J. The lasso, persistence, and

cross-validation, (2013) International Conference on Machine Learning,

JMLR 28(3), 1031–1039.

74



Choosing the tuning parameter for lasso

For cross-validation, the heavy lifting has been done for us

lasso.cv.glmnet = cv.glmnet(x=as.matrix(X),y=Y,alpha=1)

lasso.cv.lars = cv.lars(x=as.matrix(X),y=Y,type=’lasso’)

We can also get the predictions:

Ŷ0 = X>0 β̂lasso,λ̂

and coefficient estimates
β̂lasso,λ̂

with the following code..
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Predictions and coefficients: glmnet

###

# glmnet

###

lasso.cv.glmnet = cv.glmnet(X,Y,alpha=1,standardize=F)

lasso.glmnet = lasso.cv.glmnet$glmnet.fit

Yhat.glmnet = predict(lasso.cv.glmnet,X_0,s=’lambda.min’)

betaHat.glmnet = coef(lasso.cv.glmnet,s=’lambda.min’)
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Predictions and coefficients: lars

###

# lars

###

lasso.lars = lars(X,Y,type=’lasso’)

lasso.cv.lars = cv.lars(X,Y,type=’lasso’,mode=’fraction’)

frac.hat = lasso.cv.lars$index[which.min(lasso.cv.lars$cv)]

Yhat.lars = predict(lasso.lars,X_0,type=’fit’,

mode=’fraction’,s=frac.hat)$fit

betaHat = coef(lasso.lars,mode=’fraction’,s=frac.hat)
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The lasso in R
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Lasso regression path
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Comparison: Regression path
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Vertical line at minimum CV tuning parameter
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