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Lower Dimensional Embeddings: Turtle
Example

This data set gives a morphological description of 48 turtles (this
means, we get the height, weight, length, and gender of the
turtles). What does the data look like?
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Lower Dimensional Embeddings: Turtle
Example

Actually, we can do better. Use this code:

library(ade4)

data(tortues)

pturtles = tortues #rename to a english word

names(pturtles) = c("length", "width", "height", "sex")

sex = pturtles$sex

sexcol = ifelse(sex == "F", "pink", "blue")

measures = pturtles[, 1:3]

#you need to install rgl using install.packages(’rgl’)

library(rgl)

plot3d(measures, type = "s", col = sexcol)
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Lower Dimensional Embeddings: Turtle
Example, Go to 3d Plot.

Some notes:

• Notice that our covariates vector has length 3.
(Xi = (lengthi ,widthi ,heighti )

> ∈ R3)

• However, as length, width, and height are extremely (linearly)
related, it can be argued that the data vector is actually only
1 dimensional, plus some noise.

• So, maybe instead of trying to pick one of these variables, we
should use their shared 1 dimensional space.
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Lower Dimensional Embeddings: Turtle
Example

This data demonstrates the need for scaling

> measures

length width height

1 93 74 37

2 94 78 35

...

48 177 132 67

> scale(measures, center = TRUE, scale = TRUE)

length width height

1 -1.54712021 -1.69075466 -1.0908212

2 -1.49829590 -1.37619565 -1.3293607

...

48 2.55412153 2.87035093 2.4872711
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Two common uses of PCA

Exploratory Data Analysis (EDA): Using the nature of the
estimated rotation of our predictors to draw conclusions about how
the predictors are related to each other

Principal Components Regression (PCR): Use the principal
components as the inputs to a regression procedure to discover
relationships between the predictors and the response

We’ll cover both of these, starting with EDA.
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Using PCA for EDA

The goal here is two-fold:

We want to get an idea of how many dimensions our data actually
live in.

We would like to know how the predictors are related to each other.
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Using PCA for EDA
The goal here is two-fold:

We want to get an idea of how many dimensions our data actually
live in.

We would like to know how the predictors are related to each other.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

x1

x 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

Data
PC1 only

7



Using PCA for EDA: How Many Dimensions?
R Code

pc.shell = prcomp(measures,scale=TRUE)

pc.summary = summary(pc.shell)

> pc.summary

Importance of components:

PC1 PC2 PC3

Standard deviation 1.7073 0.2528 0.14611

Proportion of Variance 0.9716 0.0213 0.00712

Cumulative Proportion 0.9716 0.9929 1.00000

#Boxplot

plot(pc.shell,main=’Variance Explained’,xlab=’PCs’)

#scree plot

p = ncol(measures)

plot(0:p,c(1,1-pc.summary$importance[3,]),type="l",

xlab=’PCs’,ylab=’Cummulative Var Explained’,

main="Scree-plot",ylim=c(0,1))

points(1:p,c(1-pc.summary$importance[3,]))
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Using PCA for EDA: How Many Dimensions?

PCA finds the rotation that maximizes variance

We can order the PCs by how much variance each one explains.

Then, we retain the PCs that explain “enough” variance
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Using PCA for EDA: How Many Dimensions?

We can visualize this via scree plots

In general, we want to stop at the elbow or kink in the scree plot.
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Using PCA for EDA: Loadings
We can see how the covariates relate to each other via loadings
(These are the coordinates of the covariates in the PCs)

> pc.shell$rotation

PC1 PC2 PC3

length 0.5806536 -0.2706983 0.7678306

width 0.5780575 -0.5270479 -0.6229526

height 0.5733158 0.8055699 -0.1495531

• PC1 is comprised of a roughly equal linear combination of
each of the variables.

• PC2 has a large value of height and medium negative values
for length and width
(This indicates that PC2 describes shells that are pointy)

• PC3 has a large value of length, medium negative value for
width, and a negligible value for height.
(This indicates that PC3 describes shells that are long and narrow)

11



Using PCA for EDA: Scores

We can see how the observations relate to each other via scores
(These are the coordinates of the observations in the PCs)

> pc.shell$x

PC1 PC2 PC3

1 -2.501079256 0.431178792 0.0284694367

2 -2.427654498 0.060014223 -0.0943228042

3 -2.280037885 -0.049312926 -0.1173228864

4 -1.682937763 0.103136589 -0.1971828906

5 -1.677508679 -0.047607104 -0.1908457721

6 -1.899371091 0.008883803 0.0604355449

7 -1.643346040 0.104933543 -0.0357276551

8 -1.586646026 0.078500233 0.0392499421

9 -1.672133541 0.010650380 0.1435647400

...

48 4.568279372 -0.200538058 -0.1989389715
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Using PCA for EDA: Loadings and scores
We can graphically display these both at the same time via biplots

biplot(pc.shell,pc.biplot=TRUE)
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Using PCA for EDA: Dimensional reduction
Using the scree plot, we decided one dimension is all that is
required to represent this data

Let’s plot that dimension in a univariate fashion and see how it
relates to the sex label

plot(pc.shell$x[,1],rep(0,nrow(pc.shell$x)))
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Digits example
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Using PCA for EDA: Digits Example

Source: http://www-stat.stanford.edu/∼tibs/ElemStatLearn/

Our data is 658 handwritten 3’s, each drawn by a different person

Each image is 16x16 pixels, each taking grayscale values between
-1 and 1.
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Digits example: How does this fit with
previous examples?

Think about each pixel location as a measurement

Consider these simple drawings of 3’s. We convert this to an
observation in a matrix by unraveling it along rows

X1 =
−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
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0.
4

0.
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8
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0

X2 =
−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X1 = [1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1]>

X2 = [1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1]>

(Here, let black be 1 and white be 0)
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Digits example

We will consider digits with...

• more pixels (p = 256)

• a continuum of intensities
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Using PCA for EDA: Digits Example, Code
for Plotting Digits

plot.digit = function(x,zlim=c(-1,1)) {

cols = gray.colors(100)[100:1]

image(matrix(x,nrow=16)[,16:1],col=cols,

zlim=zlim,axes=FALSE)

}
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Using PCA for EDA: Digits Example

Eventually, we will learn how to classify these digits. But, for now,
let’s look at all 658 digits in principal components land.

load("../data/digits.Rdata")

threesCenter = scale(threes,scale=FALSE)

svd.out = svd(threesCenter)

pcs = svd.out$v

scores = svd.out$u%*%diag(svd.out$d)

Or, using prcomp:

out = prcomp(threes,scale=F)

pcs = out$rot

scores = out$x

(Note that here we aren’t scaling: the measurements are already on a consistent scale)
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Using PCA for EDA: Digits Example
We can plot the scores of the first two principal components versus
each other:

plot(scores[,1],scores[,2],xlab = ’PC1’,ylab=’PC2’,

main=’Plot of First Two PCs’)
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Using PCA for EDA: Digits Example
The idea is that where a handwritten ‘3’ falls in the plot could be
related to some fundamental, underlying property.

In the turtle example, any shell that had a large value in PC2 had
a tall and narrow shell.

Can we characterize the same thing about 3’s?
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Using PCA for EDA: Digits Example

quantile.vec = c(0.05,0.25,0.5,0.75,0.95)

quant.score1 = quantile(scores[,1],quantile.vec)

quant.score2 = quantile(scores[,2],quantile.vec)

plot(scores[,1],scores[,2],xlab = ’PC1’,ylab=’PC2’)

for(i in 1:5){

abline(h = quant.score2[i])

abline(v = quant.score1[i])

}

identify(scores[,1],scores[,2],n=25) #to find points
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Using PCA for EDA: Digits Example

pcs.order = c(73,238,550,82,640,284,84,133,4,322,392,241,

554,220,500,247,344,142,405,649,184,149,234,375,176)

par(mfrow=c(5,5))

par(mar=c(.2,.2,.2,.2))

for(i in pcs.order){

plot.digit(threes[i,])

}
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Using PCA for EDA: Digits Example

The 3’s get lighter as the location on PC2 increases.

The 3’s get more elongated bottom swoops as the location along
PC1 increases (also, the 3’s tend to get wider)
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Using PCA for EDA: Digits Example, How
Many Dimensions?

Each number represents a vector in R256

(as each square is 16x16 pixels)

However, hopefully we can reduce this number by re-expressing the
digits in PC-land

(For instance, the top-right pixel is always 0 and hence that covariate is uninteresting)
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Using PCA for EDA: Digits Example, How
Many Dimensions?

Let’s look at a scree plot

0 50 100 150 200 250
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We put vertical lines when 50% and 90% of the variance has been
explained (at 7 and 52 PCs, respectively)

> min(which(pc.summary$importance[3,]>.5))

[1] 7

> min(which(pc.summary$importance[3,]>.9))

[1] 52

27



Using PCA for EDA: Representative Digits

Lastly, we can also look at the loadings as well:

1st PC: Takes a compact 3
and smears it out

2nd PC: Deletes a portion
of the inner part
of a 3 and
augments the
outer (right) part

3rd PC: Moves a 3 down
and tips it to the
right

28



Using PCA for EDA: Representative Digits

Lastly, we can also look at the loadings as well:

1st PC: Takes a compact 3
and smears it out

2nd PC: Deletes a portion
of the inner part
of a 3 and
augments the
outer (right) part

3rd PC: Moves a 3 down
and tips it to the
right
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Using PCA for EDA: Looking deeper

2.51∗ +0.63∗ +2.02∗

0.16∗ −4.55∗ +1.96∗
=

> round(scores[1,1:6],2)

PC1 PC2 PC3 PC4 PC5 PC6

2.52 0.64 2.02 0.17 -4.55 1.97
29



Decomposing in pixel axis versus PCA axis

Using 9 axis dimensions

30



Decomposing in pixel axis versus PCA axis

Using 100 axis dimensions
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Decomposing in pixel axis versus PCA axis

Using 225 axis dimensions
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Decomposing in PCA axis only

255 PCs 256 PCs
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Decomposing in pixel axis versus PCA axis
What is this mystery figure?

This is the mean (From centering X : (X− X) = UDV>)
(that is, the origin of the PCA axis, or X)1

plot.digit(attributes(digitsCenter)$’scaled:center’)

1Technically, X i for any i
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Decomposing in pixel axis versus PCA axis
What is this mystery figure?

This is the mean (From centering X : (X− X) = UDV>)
(that is, the origin of the PCA axis, or X)1

plot.digit(attributes(digitsCenter)$’scaled:center’)

1Technically, X i for any i
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Two Common Uses of PCA

• Exploratory Data Analysis (EDA): Using the nature of the
estimated rotation of our predictors to draw conclusions about
how the predictors are related to each other.

• Principal Components Regression (PCR): Use the principal
components as the inputs to a regression procedure.
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Principal Components Regression (PCR)

We can take PCA a bit further and use it in a more supervised
capacity. Here’s the idea:

The PCs become the new predictors.
(That is, the matrix UD in X−X = UDV>, or the x object returned by prcomp)

We don’t want to use all the PCs, however (this would be
equivalent to using the original data). We have two choices:

• Use the scree plot to only include important PCs (those that
explain the most variance).

• Use all the PCs, but do model selection.

We’ll concentrate on just doing the model selection approach
(more justified theoretically).
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Principal Components Regression (PCR)

It might seem strange to use the PCs (which are computed
irrespective of the response Y ) as inputs to a regression.

Specifically, PCA estimates a feature of the marginal distribution
of X (namely, its covariance)

Regression is interested in estimating the conditional distribution
of Y |X (namely, the conditional mean of Y given X ).
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Principal Components Regression (PCR)

This can be summarized in a quote by Mosteller and Tukey (1977)

... how can we find linear combinations of the [predictors] that
will be likely, or unlikely, to pick up regression from some as
yet specified Y ?

However, they responded to themselves in the same paper that

... A malicous person who knew our X ′s and our plan for them
could always invent a Y to make our choices look horrible. But
we don’t believe that nature works that way – more nearly that
nature is, as Einstein put it, “tricky, but not downright mean.”
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Principal Components Regression (PCR) in R

We can use someone’s function:

install.packages(’pls’)

library(pls)

pcr.fit = pcr(Y~., data=X,scale=TRUE,validation="CV")

This models our response versus the PC scores of the data X . It
chooses the number of PCs via CV.
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Principal Components Regression (PCR):
Example

We have data from 1986 showing 322 major league baseball
players versus 20 variables:

AtBat: Number of times at bat in 1986

Hits: Number of hits in 1986

HmRun: Number of home runs in 1986

Runs: Number of runs in 1986

RBI: Number of runs batted in in 1986

Walks: Number of walks in 1986

Years: Number of years in the major leagues

CAtBat: Number of times at bat during his career

CHits: Number of hits during his career

CHmRun: Number of home runs during his career

CRuns: Number of runs during his career

CRBI: Number of runs batted in during his career

CWalks: Number of walks during his career
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PCR Example: MLB Salary

(Continued)

League: A factor with levels A and N indicating league

at the end of 1986

Division: A factor with levels E and W

player’s division at the end of 1986

PutOuts: Number of put outs in 1986

Assists: Number of assists in 1986

Errors: Number of errors in 1986

NewLeague: A factor with levels A and N indicating

player’s league at the beginning of 1987

We would like to predict

Salary: 1987 annual salary on opening day in thousands

of dollars
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PCR Example: MLB Salary

load(’../data/hitters.rda’)

> names(Hitters)

[1] "AtBat" "Hits" "HmRun" "Runs" "RBI"

[6] "Walks" "Years" "CAtBat" "CHits" "CHmRun"

[11] "CRuns" "CRBI" "CWalks" "League" "Division"

[16] "PutOuts" "Assists" "Errors" "Salary" "NewLeague"

> dim(Hitters)

[1] 322 20

> sum(is.na(Hitters$Salary))

[1] 59

> Hitters = na.omit(Hitters)

> dim(Hitters)

[1] 263 20
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PCR Example: MLB Salary

The syntax for pcr is very similar to lm but with a few more
arguments:

library(pls)

pcr.fit = pcr(Salary~., data=Hitters,scale=T,validation=’CV’)

A comment:

Question: What is random in this expression?

Answer: The CV part (randomly allocate data to validation
sets).
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PCR Example: MLB Salary
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PCR Example: MLB Salary

Here is the output:

> summary(pcr.fit)

Data: X dimension: 263 19

Y dimension: 263 1

Fit method: svdpc

Number of components considered: 19

VALIDATION: RMSEP

Cross-validated using 10 random segments.

(Intercept) 1 comps 2 comps 3 comps 4 comps

CV 452 348.9 352.2 353.5 352.8

adjCV 452 348.7 351.8 352.9 352.1

....

18 comps 19 comps

CV 349.2 352.6

adjCV 346.7 349.8

44



PCR Example: MLB Salary
Additionally, we can plot:

validationplot(pcr.fit,val.type="MSEP")
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PCR Example: MLB Salary

Let’s see how well it predicts. We will form a train and test split

train = sample(c(TRUE,FALSE), nrow(Hitters),rep=TRUE)

test = (!train)

And do a prediction:

pcr.fit = pcr(Salary~., data=Hitters,scale=T,

subset=train,validation=’CV’)

out.pcr = RMSEP(pcr.fit)

dim(out.pcr$val)

[1] 2 1 20

#Here

> out.pcr$comps[which.min(out.pcr$val[1,1,])]

[1] 5
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PCR Example: MLB Salary
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PCR Example: MLB Salary

pcr.fit = pcr(Salary~., data=Hitters,scale=T,subset=train,

validation=’CV’)

x = model.matrix(~.,data=Hitters)

y = Hitters$Salary

pcr.pred = predict(pcr.fit,x[test,-1],ncomp=5)

> sqrt(mean((pcr.pred - y[test])^2))

[1] 381.861

48



PCR Example: MLB Salary

Compare to, say, ridge regression

ridge.fit = cv.glmnet(x=x[train,],y=y[train],alpha=0)

ridge.pred = predict(ridge.fit,s=’lambda.min’,newx=x[test,])

> sqrt(mean((ridge.pred - y[test])^2))

[1] 388.674

So, we get a reduction of about 2% for PCR over ridge

Remember: PCR and ridge do not do any variable selection.
They attempt to minimize prediction error by reducing variance
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Principal Components Regression (PCR):
Using all components

Run PCR using all of the scores

HittersInd = model.matrix(~.,data=Hitters)

pca.out = prcomp(HittersInd)

lm.out.pca = lm(Salary~pca.out$x)

Y.hat.pca = predict(lm.out)

Or, we can use all of the original covariates

lm.out = lm(Salary~HittersInd-1)

Y.hat = predict(lm.out)

> max(abs(Y.hat.pca-Y.hat))

[1] 0

It’s the same.
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