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CLASSIFICATION

Logistic regression, which is the main type of GLM we are
considering, directly models

7(x) = Pr(Y = 1|X = x)

using the logistic function.

There is an alternate approach that models the distribution of the
X's and then inverts the probability via Bayes' theorem.



Wnany WourLD we WANT TO DO THAT?

There are several drawbacks to logistic regression:

e If the classes are well-separated, logistic regression is unstable
(or undefined)

e |t is awkward to use when the response has multiple levels



EXAMPLE OF WELL SEPARATED CLASSES:

> glm(Y"X,family=’binomial’)

(Intercept) X

-986.2 974.2
Degrees of Freedom: 99 Total (i.e. Null); 98 Residual
Null Deviance: 138.3

Residual Deviance: 1.989e-08 AIC: 4

Warning messages:

1: glm.fit: algorithm did not converge

2: glm.fit: fitted probabilities numerically O or 1 occurred



WHAT 1S A (GAUSSIAN?
Suppose

X = Kj ~ N (u = {Zj T = [cofzggl))ﬁ)

Here are n = 100 draws from four different Gaussian distributions.
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WHAT 1S A GAUSSIAN?
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ESTIMATE p AND X7
Suppose we make n = 100 independent observations
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ESTIMATING g AND ¥ WITH SEVERAL (GAUSSIANS

Suppose we want to estimate different Gaussians at the same time
Let k =1,..., K index these groups
(K =4 in figure)

® Xik,...,Xn .k be from group k
e ny be the number of observations in k" group

i ”:ZkK:1 Nk



ESTIMATING SEVERAL DIFFERENT (GAUSSIANS
We can estimate these groups with

Nk

- 1
X =— X
k nk; ik
1 &
Ty = " D (X = Xi) (X = Xie)
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ESTIMATING SEVERAL DIFFERENT (GAUSSIANS

A problem with this approach:

Each covariance matrix has: p(p + 1)/2 parameters

(As 3, must be symmetric)
For K groups, this means Kp(p + 1)/2 parameters
FOR THIS PROBLEM:
Kp(p+1)/2 = 12
This can be very large for even moderately large p or K

For p = 50:
Kp(p+1)/2 = 5100
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How TO ESTIMATE 1 AND > WITH A MIXTURE OF

(GAUSSIANS
There isn't much we can do about the p(p + 1)/2 part

But, we can make this simplification: Assume >, = %

(This means we use 2l observations to estimate a single covariance)

(Xix — X)X — Xi) "

Different fk All same &
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Linear Discriminant Analysis

CIRY= = =» T 9ac
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LINEAR DISCRIMINANT ANALYSIS (LDA)
Suppose our response can take on K different levels:

1
Y =X":
K
1. We model the covariates as a Gaussian random variable
(XY =k ~ N(pk, X))
2. Specify prior probabilities of that Y = k
(me =P(Y = k))
3. Turn this into a conditional distribution of Y given X
(Using Bayes’ theorem)
4. Find the best possible classifier
(This is the Bayes’ rule)
. This depends on the unknown parameters

7Tlv"')¢KaM1)"'5MK7Z'
6. Estimate these parameters with their sample versions.

ot
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WHAT 1S BAYES’ THEOREM?

Here, we are interested in the class label Y = k at particular
covariate value X

That is, we want

P(Y = k|X)
(Recall, this is the main ingredient to the )
BAYES' THEOREM:
P(X|Y = k)
P(Y = k|X) =
(¥ = kIX) B

o P(X|Y = k) = N(ux, X)

° = Tk
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INTUITION
How would you classify a point with this data?

Effectively we just classify an observation to the mean (X)

What do we mean by close? (Need to define distance)



INTUITION

What if the data looked like this?
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INTUITION

Or this?
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INTUITION

How about this?
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INTUITION

What about now?
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INTUITION

All of these examples show that we need to take into account
e The shape of distribution (size and eccentricity of the ellipse)

e The relative number of points in each group

These are the two main ingredients in LDA
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LINEAR DISCRIMINANT ANALYSIS (LDA)

We use the linear discriminant function

A 1l—7~ —
Sk(x) = x5 1K — Ex[z—lxk + log(#)
~—

likelihood prier

Here, 7t is the fraction of observations in group k (that is, “)
We assign an observation to k, where

k = arg max 0, (x)
k
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LINEAR DISCRIMINANT ANALYSIS (LDA)

Intuitively, assigning observations to the nearest X (but ignoring
the covariance) would amount to

k = argmin ||x — X|[3
k
= argmin x'x — 2xTyk + YZY,(
k

_ 1T
= argmin —xTXk + EXZXk
k

~ A — l—Ter 1 —
k =argmaxx' ¥ 71X, — fX:Z_le + log(7x)
k 2 ~——

likelihood prior

The difference is we weight the distance by ! and weight the
class assignment by fraction of observations in each class.
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INTUITION
What if the data looked like this?
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INTUITION
Or this?
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INTUITION

How about this?
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INTUITION

What about now?
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LDA N R

We can do this readily in R

library (MASS)
lda.fit = 1lda(Y~.,data=X)

> names(lda.fit)
[1] "prior" "counts" "means" "scaling" "lev"

out = predict(lda.fit,X_0)

> out$posterior[1:3,]

1 2 3
1 0.9999908 9.215567e-06 1.504633e-55
2 0.9999977 2.341924e-06 1.664446e-54
3 0.9999994 5.951430e-07 1.841223e-53

n Svdll
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WHAT DOES POSTERIOR MEAN?

> print(predict(lda.fit,X_0)$posterior)
1 2 3
1 0.04883796 0.9477494 0.003412639

29



REcAP

REMINDER: For every problem, we can define: argmin P(Y # Yj)
14

This is known as the Bayes' rule
It looks like (for Y taking either 0 or 1):
0if P(Y =0|X) > P(Y = 1|X)

or
1if P(Y = 1|X) > P(Y = 0/X)

(That is, we want to maximize the conditional probability)
EnvpHASIS: The Bayes' rule is unknown/unknowable

With we are trying to estimate it under particular assumptions

(ConceEPT CHECK: What are the assumptions?)
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PERFORMANCE OF LDA

The quality of the classifier produced by LDA depends on two
things:

e The sample size n
(This determines how accurate the 7, fix, and px are)

e How wrong the LDA assumptions are

(That is: X|Y = k is a Gaussian with mean p and variance X)

RECALL: The of a classifier are the values of X
such that the classifier is between two (or more) levels
of Y

A decision boundary is when this set of values looks like a
line
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WE'VE ALREADY SEEN OTHER EXAMPLES OF
LINEAR DECISION BOUNDARIES
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LDA: UNDER CORRECT ASSUMPTIONS

10

—— Bayes'rule
-- LDA

FIGURE: For n, =10
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LDA: UNDER CORRECT ASSUMPTIONS

10

—— Bayes'rule
-- LDA

FIGURE: For nx = 100
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LDA: UNDER CORRECT ASSUMPTIONS

—— Bayes'rule
-- LDA

FI1GURE: For n, = 1000
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LDA: MILDLY INCORRECT ASSUMPTIONS

10

Ficure: For n, =10
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LDA: MILDLY INCORRECT ASSUMPTIONS
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Ficure: For ny = 100
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LDA: MILDLY INCORRECT ASSUMPTIONS

FI1GURE: For n, = 1000
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LDA: VERY INCORRECT ASSUMPTIONS
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Ficure: For n, =10
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LDA: VERY INCORRECT ASSUMPTIONS

Ficure: For ny = 100
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LDA: VERY INCORRECT ASSUMPTIONS

FI1GURE: For n, = 1000 m



THE LDA VARIANCE ASSUMPTION
Returning to the assumption: X, = X

The assumption provides two benefits:
e Allows for estimation when n large compared with
Kp(p+1)/2
e Lowers the variance of the procedure (but produces bias)

(This can be seen by the estimation of fewer parameters)

Different fk All same 3
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THE LDA VARIANCE ASSUMPTION

However, when
e n is large compared with Kp(p + 1)/2
(Say, min n, > 40p(p +1)/2)

e The induced bias outweighs the variance

(This is hard to determine. Usually compare the prediction error on test set)

We relax the assumption and let X|Y = k have
e mean i

e variance X,

These additional parameters make the decision boundary

(Instead of linear)
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Quadratic Discriminant Analysis

CIRY= = =» T 9ac
44



QUADRATIC DISCRIMINANT ANALYSIS (QDA)

The formulas for QDA are a bit more complicated, so I'll omit them

However, the motivation is the same: classify with the label of the
closest group, taking into account:

e The covariance of group (X4)

e The relative probability of each group ()

It has almost exactly the same R code:

library (MASS)
gqda.fit = qda(Y~.,data=X)

out = predict(lda.fit,X_0)
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QDA: MORE FLEXIBILITY THAN NEEDED

—— Bayes'rule
---- QDA

-10

FI1GURE: For n, = 100. Note linear Bayes’ rule, nonlinear QDA decision

boundary
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QDA: MORE FLEXIBILITY THAN NEEDED

—— Bayes'rule
---- QDA
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F1GURE: For ny = 300. Note linear Bayes’ rule, nonlinear QDA decision

boundary
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QDA: MORE FLEXIBILITY THAN NEEDED

—— Bayes'rule
---- QDA
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FI1GURE: For nx = 2000. Note linear Bayes' rule. The nonlinear QDA
decision boundary has converged to Bayes' rule
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QDA: DIFFERENT X, ASSUMPTION NEEDED

—— Bayes'rule
---- QDA
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FicURE: For n, = 100. Note
decision boundary

Bayes’ rule, nonlinear QDA
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QDA: DIFFERENT X, ASSUMPTION NEEDED

—— Bayes'rule
---- QDA
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F1cUure: For n, = 300.
decision boundary

Note

Bayes’ rule, nonlinear QDA
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QDA: DIFFERENT X, ASSUMPTION NEEDED
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—— Bayes'rule
---- QDA

-10

FI1GURE: For n, = 2000.
decision boundary

Note

Bayes' rule, nonlinear QDA
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LDA vs. QDA: UNDER CORRECT ASSUMPTIONS
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FIGURE: For n, = 100
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LDA vs. QDA: VERY INCORRECT ASSUMPTIONS
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FI1Gurg: LDA n, = 1000,

QDA n, = 2000
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