CLASSIFICATION II: DISCRIMINANT ANALYSIS -Applied Multivariate Analysis-

Lecturer: Darren Homrighausen, PhD

Logistic regression, which is the main type of GLM we are considering, directly models

$$\pi(x) = \Pr(Y = 1 | X = x)$$

using the logistic function.

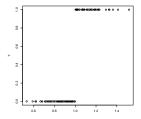
There is an alternate approach that models the distribution of the X's directly and then inverts the probability via Bayes' theorem.

Why Would we Want to do That?

There are several drawbacks to logistic regression:

- If the classes are well-separated, logistic regression is unstable (or undefined)
- It is awkward to use when the response has multiple levels

EXAMPLE OF WELL SEPARATED CLASSES:



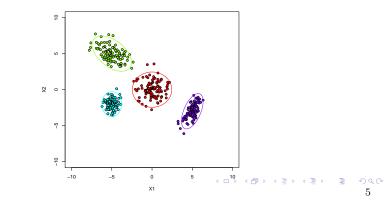
```
> glm(Y<sup>X</sup>,family='binomial')
(Intercept) X
-986.2 974.2
Degrees of Freedom: 99 Total (i.e. Null); 98 Residual
Null Deviance: 138.3
Residual Deviance: 1.989e-08 AIC: 4
Warning messages:
1: glm.fit: algorithm did not converge
2: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

WHAT IS A GAUSSIAN?

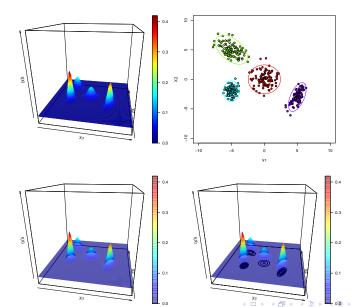
Suppose

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N\left(\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \Sigma = \begin{bmatrix} \operatorname{var}(X_1) & \operatorname{cov}(X_1, X_2) \\ \operatorname{cov}(X_2, X_1) & \operatorname{var}(X_2) \end{bmatrix}\right)$$

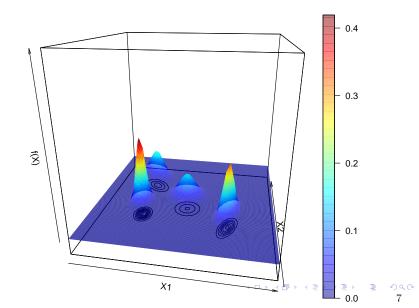
Here are n = 100 draws from four different Gaussian distributions.



WHAT IS A GAUSSIAN?



WHAT IS A GAUSSIAN?

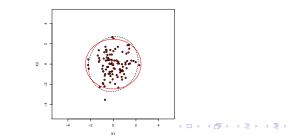


ESTIMATE μ and Σ ?

Suppose we make n = 100 independent observations

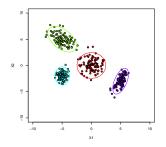
$$X_1,\ldots,X_{100} \sim N\left(\mu = \begin{bmatrix} 0\\0\end{bmatrix},\Sigma = \begin{bmatrix} 1 & 0\\0 & 1\end{bmatrix}\right)$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \begin{bmatrix} 0.0012\\ 0.001 \end{bmatrix}$$
$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X}) (X_i - \overline{X})^\top = \frac{1}{n} (\mathbb{X} - \overline{\mathbb{X}})^\top (\mathbb{X} - \overline{\mathbb{X}}) = \begin{bmatrix} 0.8 & 0.1\\ 0.1 & 1.2 \end{bmatrix}$$



3

Estimating μ and Σ with several Gaussians



Suppose we want to estimate different Gaussians at the same time

Let $k = 1, \ldots, K$ index these groups (K = 4 in figure)

• $X_{1k}, \ldots, X_{n_k k}$ be from group k

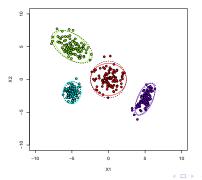
• n_k be the number of observations in k^{th} group

•
$$n = \sum_{k=1}^{K} n_k$$

ESTIMATING SEVERAL DIFFERENT GAUSSIANS

We can estimate these groups with

$$egin{aligned} \overline{X}_k &= rac{1}{n_k}\sum_{i=1}^{n_k}X_{ik}\ \hat{\Sigma}_k &= rac{1}{n_k}\sum_{i=1}^{n_k}(X_{ik}-\overline{X}_k)(X_{ik}-\overline{X}_k)^{ op} \end{aligned}$$



≡ •) Q (• 10

A.

ESTIMATING SEVERAL DIFFERENT GAUSSIANS

A problem with this approach: a lot of parameters

Each covariance matrix has: p(p+1)/2 parameters (As $\hat{\Sigma}_k$ must be symmetric)

For K groups, this means Kp(p+1)/2 parameters

FOR THIS PROBLEM:

$$Kp(p+1)/2 = 12$$

This can be very large for even moderately large p or K

FOR p = 50:

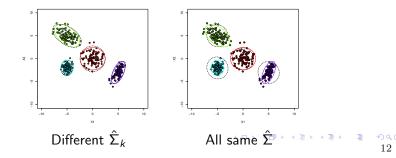
$$Kp(p+1)/2 = 5100$$

How to estimate μ and Σ with a mixture of Gaussians

There isn't much we can do about the p(p+1)/2 part

But, we can make this simplification: Assume $\Sigma_k = \Sigma$ (This means we use all observations to estimate a single covariance)

$$\hat{\Sigma} = \frac{1}{n} \sum_{k=1}^{K} \sum_{i=1}^{n_k} (X_{ik} - \overline{X}_k) (X_{ik} - \overline{X}_k)^{\top}$$



Linear Discriminant Analysis

LINEAR DISCRIMINANT ANALYSIS (LDA)

Suppose our response can take on K different levels:

$$Y = \begin{cases} 1 \\ \vdots \\ K \end{cases}$$

- 1. We model the covariates as a Gaussian random variable $(X|Y = k \sim N(\mu_k, \Sigma))$
- 2. Specify prior probabilities of that Y = k $(\pi_k = \mathbb{P}(Y = k))$
- Turn this into a conditional distribution of Y given X (Using Bayes' theorem)
- 4. Find the best possible classifier

(This is the Bayes' rule)

5. This depends on the unknown parameters $\sum_{n=1}^{\infty}$

```
\pi_1,\ldots,\pi_K,\mu_1,\ldots,\mu_K,\Sigma.
```

6. Estimate these parameters with their sample versions.

5. S

WHAT IS BAYES' THEOREM?

Here, we are interested in the class label Y = k at particular covariate value X

That is, we want

$$\mathbb{P}(Y=k|X)$$

(Recall, this is the main ingredient to the Bayes' rule)

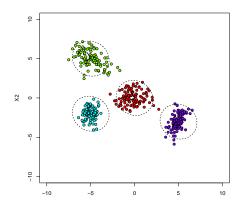
BAYES' THEOREM:

$$\mathbb{P}(Y = k | X) = \frac{\mathbb{P}(X | Y = k) \mathbb{P}(Y = k)}{\mathbb{P}(X)}$$

- $\mathbb{P}(X|Y=k) = N(\mu_k, \Sigma)$
- $\mathbb{P}(Y = k) = \pi_k$

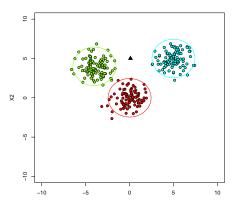
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへの

How would you classify a point with this data?

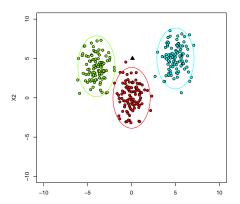


Effectively we just classify an observation to the closest mean (\overline{X}_k) What do we mean by close? (Need to define distance)

What if the data looked like this?

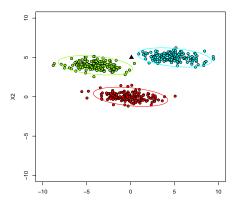


Or this?

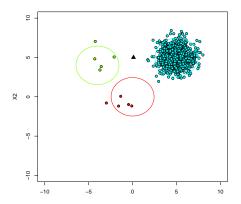


<ロ> < 部> < 言> < 言> < 言 > うへで 18

How about this?



What about now?



<ロト < 部 > < 言 > < 言 > 三 の < で 20

All of these examples show that we need to take into account

- The shape of distribution (size and eccentricity of the ellipse)
- The relative number of points in each group

These are the two main ingredients in LDA

LINEAR DISCRIMINANT ANALYSIS (LDA)

We use the linear discriminant function

$$\delta_k(\mathbf{x}) = \underbrace{\mathbf{x}^\top \hat{\Sigma}^{-1} \overline{X}_k - \frac{1}{2} \overline{X}_k^\top \hat{\Sigma}^{-1} \overline{X}_k}_{likelihood} + \underbrace{\log(\hat{\pi}_k)}_{prior}$$

Here, $\hat{\pi}_k$ is the fraction of observations in group k (that is, $\frac{n_k}{n}$) We assign an observation to \hat{k} , where

$$\hat{k} = \arg\max_{k} \delta_k(x)$$

<□> <@> < E> < E> E のQC

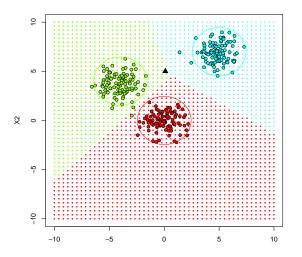
LINEAR DISCRIMINANT ANALYSIS (LDA)

Intuitively, assigning observations to the nearest \overline{X}_k (but ignoring the covariance) would amount to

$$\begin{split} \tilde{k} &= \underset{k}{\operatorname{argmin}} \||\mathbf{x} - \overline{X}_{k}||_{2}^{2} \\ &= \underset{k}{\operatorname{argmin}} \mathbf{x}^{\top} \mathbf{x} - 2\mathbf{x}^{\top} \overline{X}_{k} + \overline{X}_{k}^{\top} \overline{X}_{k} \\ &= \underset{k}{\operatorname{argmin}} - \mathbf{x}^{\top} \overline{X}_{k} + \frac{1}{2} \overline{X}_{k}^{\top} \overline{X}_{k} \\ & \text{compare this to:} \\ \hat{k} &= \underset{k}{\operatorname{argmax}} \underbrace{\mathbf{x}^{\top} \hat{\Sigma}^{-1} \overline{X}_{k} - \frac{1}{2} \overline{X}_{k}^{\top} \hat{\Sigma}^{-1} \overline{X}_{k}}_{likelihood} + \underbrace{\log(\hat{\pi}_{k})}_{prior} \end{split}$$

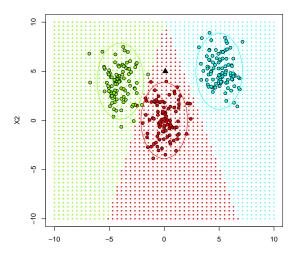
The difference is we weight the distance by $\hat{\Sigma}^{-1}$ and weight the class assignment by fraction of observations in each class.

What if the data looked like this?



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - 釣A♡

Or this?

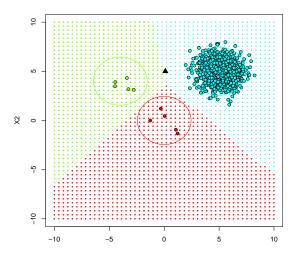


How about this?



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

What about now?

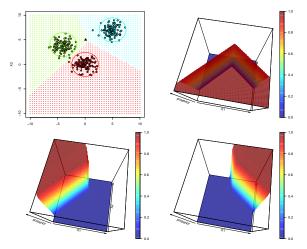


LDA in \mathbf{R}

```
We can do this readily in R
```

```
library(MASS)
lda.fit = lda(Y~.,data=X)
> names(lda.fit)
 [1] "prior" "counts" "means" "scaling" "lev"
                                                       "svd"
out = predict(lda.fit,X_0)
> out$posterior[1:3,]
                     2
                                    3
          1
1 0.9999908 9.215567e-06 1.504633e-55
2 0.9999977 2.341924e-06 1.664446e-54
3 0.9999994 5.951430e-07 1.841223e-53
```

WHAT DOES POSTERIOR MEAN?



< □ > < ---->

RECAP

REMINDER: For every problem, we can define: $\operatorname{argmin}_{\hat{Y}} \mathbb{P}(\hat{Y} \neq Y_0)$

This is known as the Bayes' rule

It looks like (for Y taking either 0 or 1):

$$0 \text{ if } \mathbb{P}(Y = 0|X) \geq \mathbb{P}(Y = 1|X)$$

or

1 if
$$\mathbb{P}(Y = 1|X) \ge \mathbb{P}(Y = 0|X)$$

(That is, we want to maximize the conditional probability)

EMPHASIS: The Bayes' rule is unknown/unknowable

With LDA we are trying to estimate it under particular assumptions (CONCEPT CHECK: What are the assumptions?)

Performance of LDA

The quality of the classifier produced by LDA depends on two things:

• The sample size n

(This determines how accurate the $\hat{\pi}_k$, $\hat{\mu}_k$, and $\hat{\Sigma}$ are)

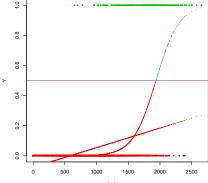
How wrong the LDA assumptions are

(That is: X|Y = k is a Gaussian with mean μ_k and variance Σ)

RECALL: The decision boundary of a classifier are the values of X such that the classifier is indifferent between two (or more) levels of Y

A linear decision boundary is when this set of values looks like a line

WE'VE ALREADY SEEN OTHER EXAMPLES OF LINEAR DECISION BOUNDARIES



balance

LDA: UNDER CORRECT ASSUMPTIONS

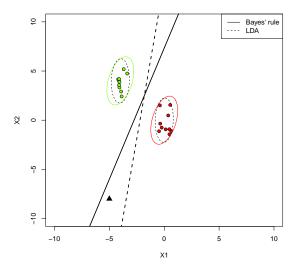


FIGURE: For $n_k = 10$ and $n_k = 10$ and $n_k = 10$

LDA: UNDER CORRECT ASSUMPTIONS

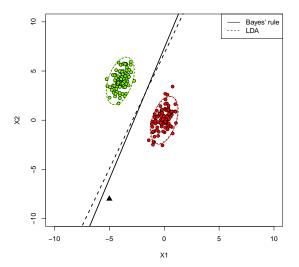
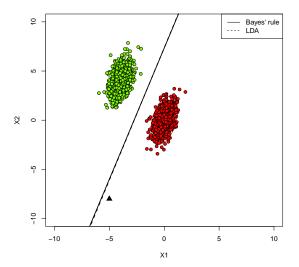


FIGURE: For $n_k = 100$ (\square) (\square

LDA: UNDER CORRECT ASSUMPTIONS



LDA: MILDLY INCORRECT ASSUMPTIONS

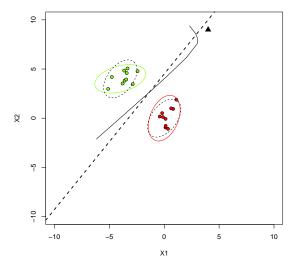


FIGURE: For $n_k = 10$ and $n_k = 10$ and $n_k = 10$

LDA: MILDLY INCORRECT ASSUMPTIONS

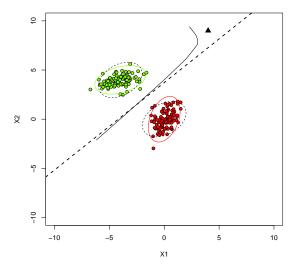


FIGURE: For $n_k = 100$ and $n_k = 100$ and $n_k = 100$

LDA: MILDLY INCORRECT ASSUMPTIONS



FIGURE: For $n_k = 1000^{\circ}$

LDA: VERY INCORRECT ASSUMPTIONS

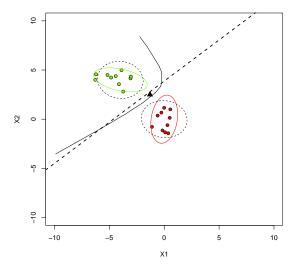


FIGURE: For $n_k = 10$ and $n_k = 10$ and $n_k = 10$

LDA: VERY INCORRECT ASSUMPTIONS

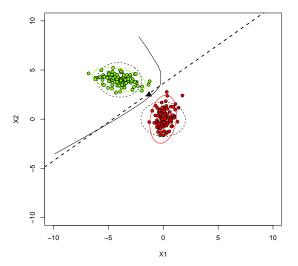


FIGURE: For $n_k = 100$ ($\square \rightarrow A \square \rightarrow A \square$

LDA: VERY INCORRECT ASSUMPTIONS

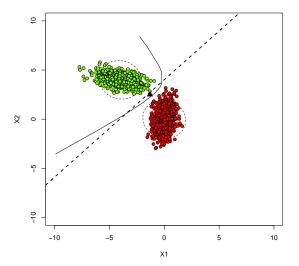


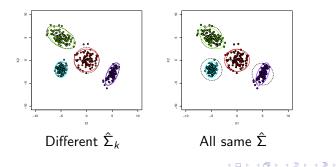
FIGURE: For $n_k = 1000^{(\square)}$

THE LDA VARIANCE ASSUMPTION

Returning to the assumption: $\Sigma_k = \Sigma$

The assumption provides two benefits:

- Allows for estimation when $n \operatorname{isn't}$ large compared with Kp(p+1)/2
- Lowers the variance of the procedure (but produces bias) (This can be seen by the estimation of fewer parameters)



THE LDA VARIANCE ASSUMPTION

However, when

- n is large compared with Kp(p+1)/2(Say, min $n_k \ge 40p(p+1)/2$)
- The induced bias outweighs the variance (This is hard to determine. Usually compare the prediction error on test set)
- We relax the assumption and let X|Y = k have
 - mean μ_k
 - variance Σ_k

These additional parameters make the decision boundary quadratic (Instead of linear)

Quadratic Discriminant Analysis

QUADRATIC DISCRIMINANT ANALYSIS (QDA)

The formulas for QDA are a bit more complicated, so I'll omit them

However, the motivation is the same: classify with the label of the closest group, taking into account:

- The covariance of every group (Σ_k)
- The relative probability of each group (π_k)

It has almost exactly the same R code:

```
library(MASS)
qda.fit = qda(Y~.,data=X)
out = predict(lda.fit,X_0)
```

QDA: More flexibility than needed

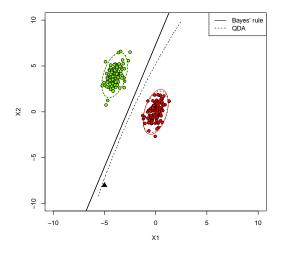


FIGURE: For $n_k = 100$. Note linear Bayes' rule, nonlinear QDA decision boundary

QDA: More flexibility than needed

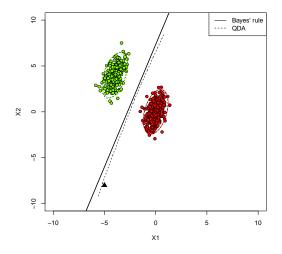


FIGURE: For $n_k = 300$. Note linear Bayes' rule, nonlinear QDA decision boundary

QDA: More flexibility than needed

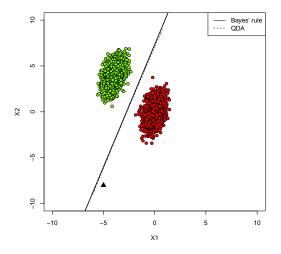


FIGURE: For $n_k = 2000$. Note linear Bayes' rule. The nonlinear QDA decision boundary has converged to Bayes' rule $\langle \Box \rangle \langle \Box \rangle \langle$

QDA: DIFFERENT Σ_k Assumption needed

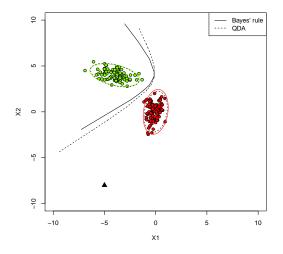


FIGURE: For $n_k = 100$. Note nonlinear Bayes' rule, nonlinear QDA decision boundary

QDA: DIFFERENT Σ_k Assumption needed

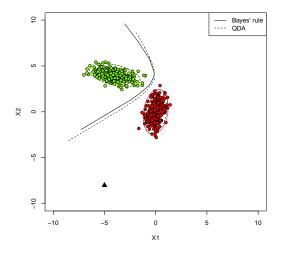


FIGURE: For $n_k = 300$. Note nonlinear Bayes' rule, nonlinear QDA decision boundary

QDA: DIFFERENT Σ_k Assumption needed

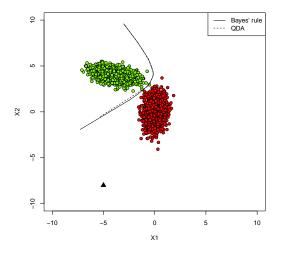


FIGURE: For $n_k = 2000$. Note nonlinear Bayes' rule, nonlinear QDA decision boundary

LDA vs. QDA: under correct assumptions

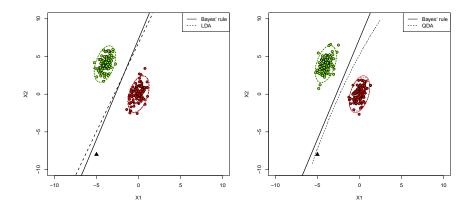


FIGURE: For $n_k = 100$

LDA VS. QDA: VERY INCORRECT ASSUMPTIONS

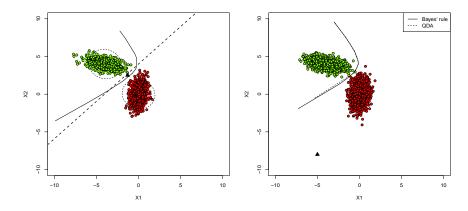


FIGURE: LDA $n_k = 1000$, QDA $n_k = 2000$