
Classification III: Sparse Logistic
Regression

-Applied Multivariate Analysis-

Lecturer: Darren Homrighausen, PhD
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Reminder: Generalized Linear Models (GLMs)
Logistic regression (with logit link):

Let π(Xi ) = Pr(Yi = 1|Xi ),

log

(
π(Xi )

1− π(Xi )

)
= X>i β

It is differentiable, maps [0,1] to R, and is invertible. Its inverse is:

π(Xi ) =
exp{X>i β}

1 + exp{X>i β}

Important: We can

• ... estimate: β̂ through maximum likelihood

• ... estimate: π̂(X ) = exp{β̂>X}
1+exp{β̂>X}

• ... classify: Ŷ = 1(π̂(X ) > threshold)
(For instance, threshold = 0.5)
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Reminder: The lasso
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This regularization set...

... is convex (computationally efficient)

... has corners (performs model selection)

3



Best of both worlds?

Summary: We have

• Logistic regression: Useful in the classification problem by
providing an estimate of P(Y = 1|X )

• Lasso: Useful for prediction/inference when p is large, but Y
is continuous

We can combine these methods, but we need to think of lasso in
terms of maximum likelihood
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Maximum likelihood

Recall the Gaussian likelihood

L(µ, σ;Y ) =
1√

2πσ2
e−

1
2σ2 (Y−µ)2

If we take the log, we get

`(µ, σ;Y ) = log(L(µ, σ;Y )) = −1

2

(
log(2π) + log(σ2)

)
− 1

2σ2
(Y−µ)2

If we want to do maximum likelihood over µ, we can do:
(Now, we are considering σ2 known and hence can eliminate it from the expression)

µ̂MLE = arg max
µ

`(µ, σ; x) = arg max
µ

−(Y − µ)2 =?

(Answer: ? = Y )
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Maximum likelihood

Now, suppose we have Y1, . . . ,Yn ∼ N(µ, σ2)

Then we get

`(µ, σ;Y1, . . . ,Yn) = −n

2

(
log(2π) + log(σ2)

)
−

n∑
i=1

1

2σ2
(Yi − µ)2

If we want to do maximum likelihood over µ, we can do:
(Same as before, use calculus to maximize)

µ̂MLE = arg max
µ

`(µ, σ; x) = arg max
µ

n∑
i=1

−(Yi − µ)2 =?

(Answer: ? = Y )
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Maximum likelihood
Now, suppose we have pairs of data(X1,Y1), . . . , (Xn,Yn).

Now, we state there is a parameter β such that

Y |X ∼ N(µ, σ2) and µ = X>β

The log likelihood looks like before, but now we put µ = X>β

`(β, σ;Y1, . . . ,Yn) = −n

2

(
log(2π) + log(σ2)

)
−

n∑
i=1

1

2σ2
(Yi − µ)2

= −n

2

(
log(2π) + log(σ2)

)
−

n∑
i=1

1

2σ2
(Yi − X>i β)2

If we want to do maximum likelihood over β, we can do:

β̂MLE = arg max
β

−
n∑

i=1

(Yi − X>i β)2 = argmin
β

n∑
i=1

(Yi − X>i β)2

= argmin
β
||Y − Xβ||22 = (X>X)−1X>Y
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Lasso

Conclusion: We can think about the lasso as a regularized
maximum likelihood estimator

For regression:

Y = X>β + ε ∼ N(X>β, σ2)

For classification:

Y ∼ Bernoulli(π(X )) and π(X ) = logistic(X>β)

(We can do other likelihood-based methods such as negative binomial, Poisson, Cox

proportional hazard, ... . We won’t be discussing these in this class, however)
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Logistic lasso

From last slide: For classification:

Y ∼ Bernoulli(π(X )) and π(X ) = logistic(X>β)

This is the same as writing the log-likelihood as

`(β) =
n∑

i=1

(
Yiβ

>Xi − log(1 + eβ
>Xi )

)
Graphically it looks like...
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Logistic lasso
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Regression lasso Logistic lasso

The problem is still...

... convex (computationally efficient)

... and has corners (performs model selection)
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Logistic lasso

Now, as we have changed the likelihood, we want to solve

min
β

n∑
i=1

−
(
Yiβ

>Xi − log(1 + eβ
>Xi )

)
+ λ ||β||1

instead of the classic (Gaussian) lasso

min
β

n∑
i=1

(
Yi − β>Xi

)2
+ λ ||β||1
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Logistic lasso in R

Again, generous R developers have come to our rescue

We already know how to do logistic lasso

glmnet(x=X,y=Y,family=’binomial’,alpha=1)

#or

cv.glmnet(x=X,y=Y,family=’binomial’,alpha=1)

All the previous discussions apply
(Make sure the λ grid is appropriate, get predictions with predict or coefficients with

coef, we can do elastic net (including logistic ridge regression) by setting alpha)

One slight difference is in getting the predictions

#For classifications

predict(out,X_0,s=’lambda.min’,type=’class’)

#For probabilities

predict(out,X_0,s=’lambda.min’,type=’response’)
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