
Classification IV: Decision Trees
-Applied Multivariate Analysis-

Lecturer: Darren Homrighausen, PhD
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An Introductory Example

Use macroeconomic data to predict recessions

Use handful of national-level variables – Federal Funds Rate, Term
Spread, Industrial Production, Payroll Employment, S&P500

Also include state-level Payroll Employment

In this example, we code Y = 1 as a recession and Y = 0 as
growth.

We will use data from 1960 through 1999 as training data

We will use data from 2000 through 2011 as testing data

See Owyang, Piger, Wall (2012)
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Trees
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What is a (decision) tree?

• Trees involve stratifying or segmenting the predictor space
into a number of simple regions.

• Trees are simple and useful for interpretation.

• Basic trees are not great at prediction.

• More modern methods that use trees are much better.
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Example tree
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Dendrogram view

|
sp500 < −0.0313227

Maine < 0.113708

1 0

0

Terminology

• We call each split or end point a node. Each terminal node is
referred to as a leaf

I This tree has 2 interior nodes and 3 terminal nodes.

• The interior nodes lead to branches.
I This graph has two main branches (the S&P 500 split).
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Partitioning view
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Notes

• We classify all observations in a region the same.

• The three regions R1, R2, and R3 are the leaves of the tree.
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We’ve seen this before...
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LDA also partitions into regions
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We can interpret this as

• S&P 500 is the most important variable.
• If S&P 500 is large enough, then we predict no recession.
• If S&P 500 is small enough, then we need to know the change

in the employment level of Maine. 9



How do we build a tree?

1. Divide the predictor space into M non-overlapping regions
R1, . . . ,RM

(this is done via greedy, recursive, binary splitting)

2. Every observation that falls into a given region Rm is given
the same prediction

I Regression: The average of the responses for a region
I Classification: Determined by majority (or plurality) vote

in that region

Important:

- Trees can only make rectangular regions that are aligned with
the coordinate axis.

- The fit is greedy, which means that after a split is made, all
further decisions are conditional on that split.

- The tree stops splitting when there are too few observations
in a terminal node

10



How do we measure quality of fit?

Let p̂mk be the proportion of training observations

• in the mth region
(Reminder: This corresponds to the mth terminal node)

• from the kth class

There are many possibilities:

classification error rate: E = 1−maxk(p̂mk)
Gini index: G =

∑
k p̂mk(1− p̂mk)

cross-entropy: D = −
∑

k p̂mk log(p̂mk)

We build a classifier by growing a tree that minimizes G or D.

11



How do we measure quality of fit?
Example: Suppose K = 2. Then p̂ = p̂m1 = 1− p̂m2

The mth node is made by minimizing either E , G , or D over all

• Covariates
• split points of that covariate
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(They penalize values of p̂ far from 0 or 1 more severely)
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How do we measure quality of fit?
Example: Suppose K = 2 and we want to make the first split

Then p̂11 = 1− p̂12

(Define the ‘left’ or ‘bottom’ region as R1)

Let’s look at some possible splits:
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How do we measure quality of fit?
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There’s a problem

Following this procedure overfits!

• The process described so far will fit overly complex trees,
leading to poor predictive performance.

• Overfit trees mean they have too many leaves.

• To stretch the analogy further, trees with too many leaves
must be pruned.

16



Pruning the tree

• Cross-validation can be used to directly prune the tree, but it
is far too expensive (computationally) to use in practice
(combinatorial complexity)

• Instead, we use weakest link pruning

|T |∑
m=1

∑
i∈Rm

1(Yi 6= ŶRm) + α|T |

where |T | is the number of terminal nodes.

Essentially, we are trading training fit (first term) with model
complexity (second term)
(compare to lasso)

• Now, cross-validation can be used to pick α.
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Results of trees on recession data

|
ind.prod < −0.00451645

Georgia < 0.0980767

sp500 < 0.084999

Alaska < −0.131672

Washington < 0.142801

New_Jersey < 0.0941853
Mississippi < 0.171065

pay.emp < 0.0039243

fed.funds < 6.23

Washington < −0.0920696

Wyoming < 0.257712
sp500 < 0.0709548

sp500 < −0.0995412
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Unpruned tree Pruned Tree

The pruned tree is a subset of the unpruned tree (nested)

There are splits that result in having the same prediction. Why?
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Splits with same prediction
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Suppose we split at verticle, dashed line. Then p̂11 = 0.75.

What happens if we were to now split R1 at X2 = 0.5?

What happens if we were to now split R1 at X2 = 0.4?
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Results of trees on recession data

The trees on the previous slide were grown on the training data
(from 1960 to 2000)

Now, we use them to predict on the test data (from 2000 to 2011)
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Results of trees on recession data
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Advantages and disadvantages of trees

+ Trees are very easy to explain (much easier than even linear
regression).

+ Some people believe that decision trees mirror human decision.

+ Trees can easily be displayed graphically no matter the
dimension of the data.

+ Trees can easily handle qualitative predictors without the need
to create dummy variables.

− Trees aren’t very good at prediction.

To fix this last one, we can try to grow many trees and average
their performance.
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Trees in R

Create a basic, unpruned tree:

require(tree)

out.tree = tree(Y~.,data=X,split=’gini’)

plot(tmp.tree)

text(tmp.tree)
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Trees in R

Prune the tree via cross-validation

out.tree.orig = tree(Y~.,data=X)

out.tree.cv = cv.tree(out.tree.orig,FUN=prune.misclass)

> names(out.tree.cv)

[1] "size" "dev" "k" "method"

24



Trees in R
Prune the tree via cross-validation

> out.tree.cv

$size

[1] 14 13 11 9 3 2 1

$dev

[1] 45 45 44 44 44 64 67

$k

[1] -Inf 0.0 2.0 2.5 3.0 15.0 20.0

$method

[1] "misclass"

attr(,"class")

[1] "prune" "tree.sequence"

Note: k corresponds to α in weakest-link pruning
(Editors note: I had α as λ in posted notes)
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Cross validation plots

plot(out.tree.cv$size,out.tree.cv$dev,type="b")

plot(out.tree.cv$k,out.tree.cv$dev,type="b")
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Trees in R

Prune the tree via cross-validation

best.size = out.tree.cv$size[which.min(out.tree.cv$dev)]

> best.size

[1] 11

out.tree = prune.misclass(out.tree.orig,best=best.size)

class.tree = predict(out.tree,X_0,type=’class’)
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Bagging
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Notation

Reminder: For either classification or regression, we produce
predictions for a given covariate vector X

That is, we form
Ŷ = f̂ (X )

where

• f̂ is some procedure formed with the training data
(Examples: β̂ formed by least squares, or the discriminant function δk for LDA)

• The prediction Ŷ formed at a desired covariate vector X
(Examples: Ŷ = X>β̂ formed by least squares, or Ŷ = arg maxk δk (X ) for

LDA)
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Bagging

Many methods (trees included) tend to be designed to have lower
bias but high variance

This means that if we split the training data into two parts at
random and fit a decision tree to each part, the results could be
quite different

A low variance estimator would yield similar results if applied
repeatedly to distinct data sets
(consider f̂ (X ) = 0 for all X )

Bagging, also known as Bootstrap AGgregation, is a general
purpose procedure for reducing variance.

We’ll use it specifically in the context of trees, but it can be
applied more broadly.
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Bagging: The main idea
Suppose we have n uncorrelated observations Z1, . . . ,Zn, each
with variance σ2.

What is the variance of

Z =
1

n

n∑
i=1

Zi?

Answer: σ2/n.

More generally, if we have B separate (uncorrelated) training sets,
we could form B separate model fits,

f̂ 1(X ), . . . , f̂ B(X )

Then average them:

f̂B(X ) =
1

B

B∑
b=1

f̂ b(X )
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Bagging: The bootstrap part

Of course, this isn’t practical as having access to many training
sets is unlikely.

We therefore turn to the bootstrap to simulate having many
training sets.

The bootstrap is a widely applicable statistical tool that can be
used to quantify uncertainty without Gaussian approximations.

Let’s look at an example.
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Bootstrap detour
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Bootstrap detour
Suppose we are looking to invest in two financial instruments, X
and Y . The return on these investments is random, but we still
want to allocate our money in a risk minimizing way.

That is, for some α ∈ (0, 1), we want to minimize

Var(αX + (1− α)Y )

The minimizing α is:

α∗ =
σ2
Y − σ2

XY

σ2
X + σ2

Y − 2σ2
XY

(Here, σ2
XY is the covariance between X and Y )

which we can estimate via

α̂ =
σ̂2
Y − σ̂2

XY

σ̂2
X + σ̂2

Y − 2σ̂2
XY
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Bootstrap detour
Now that we have an estimator of α, it would be nice to have an
estimator of its variability. In this case, computing a standard error
is difficult.

Suppose for a moment that we can simulate a large number of
draws (say 1000) of the data, which has actual value α = 0.6.
Then we could get estimates α̂1, . . . , α̂1000:
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Bootstrap detour
Histogram of results
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The mean of all of these is:

α =
1

1000

1000∑
r=1

α̂r = 0.599,

which is very close to 0.6 (red line), and the standard error is√√√√ 1

1000− 1

1000∑
r=1

(α̂r − α)2 = 0.035.
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Bootstrap detour

The standard error of 0.035 gives a very good idea of the accuracy
of α̂ for a single sample. Roughly speaking, for a new random
sample, we expect α̂ ∈ (α− 2 ∗ 0.035, α + 2 ∗ 0.035).

In practice, of course, we cannot use this procedure as it relies on
being able to draw a large number of (independent) samples from
the same distribution as our data.

This is where the bootstrap comes in.

We instead draw a large number of samples directly from our
observed data. This sampling is done with replacement, which
means that the same data point can be drawn multiple times.
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Bootstrap detour: Small example

Suppose we have data D = (4.3, 3, 7.2, 6.9, 5.5).

Then we can draw bootstrap samples, which might look like:

D∗1 = (7.2, 4.3, 7.2, 5.5, 6.9)

D∗2 = (6.9, 4.3, 3.0, 4.3, 6.9)

...

D∗B = (4.3, 3.0, 3.0, 5.5, 6.9)

It turns out each of these D∗b have very similar properties as D
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Bootstrap detour: Small example

Now, we form the bootstrap mean:

meanB =
1

B

B∑
b=1

α̂∗b

The bootstrap estimator of the standard error is:

SEB =

√√√√ 1

B − 1

B∑
b=1

(
α̂∗b −meanB

)2
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Bootstrap detour
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Bootstrap: End detour

Summary:

Suppose we have data D = (Z1, . . . ,Zn) and we want to get an
idea of the sampling distribution of some statistic f̂ trained on D.

Then we do the following: For a large number (call it B) of
samples:
(B could be, say, 1000)

Then for each b = 1, . . . ,B

1. Form a new bootstrap draw from D, call it D∗

2. Compute f̂ ∗b from D∗

Now, we can estimate the distribution of f̂ trained on D by looking
at the distribution of the B draws, f̂ ∗b .
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End detour
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Bagging: The bootstrap part

Now, instead of having B separate training sets, we train on B
bootstrap draws:

f̂ ∗1 (X ), . . . , f̂ ∗B (X )

and then average them:

f̂bag(X ) =
1

B

B∑
b=1

f̂ ∗b (X )

This process is known as Bagging
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Bagging trees
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Bagging trees

The procedure for trees is the following

1. Choose a large number B.

2. For each b = 1, . . . ,B, grow an unpruned tree on the bth

bootstrap draw from the data.

3. Average all these trees together.

Each tree, since it is unpruned, will have (low/high) variance and
(low/high) bias

Therefore averaging many trees results in an estimator that has
lower variance and still low bias.
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Additional tree bagging topics
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Bagging trees

Now that we are growing a large number (B) of random trees, we
can’t directly look at the dendrogram

This means we have sacrificed some interpretability for better
performance

However, we do get some helpful information instead

• Mean decrease variable importance

• Out-of-Bag error estimation (OOB)

• Permutation variable importance
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Mean decrease variable importance

To recover some information, we can do the following:

1. For each of the B trees and each of the p variables, we record
the amount that the Gini index (or cross-entropy) is reduced
by the addition of that variable

2. Report the average reduction over all B trees

This gives us an indication of the importance of a variable
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Mean decrease variable importance

Observation: Every time a split of a node is made on a covariate,
the gini impurity criterion for the two descendent
nodes is less than the parent node

Hence, adding up the gini decreases for each covariate over all
trees gives an indication of variable importance

Intuitively an important covariate is one that if split upon, it leads
to a large drop in the Gini index
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Mean decrease variable importance
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Out-of-Bag samples (OOB)

One can show that, on average, drawing n samples from n
observations with replacement results in about 2/3 of the
observations being selected.

The remaining one-third of the observations not used are referred
to as out-of-bag (OOB)

51



Out-of-Bag samples (OOB)

We can think of it as a for-free cross-validation

Let D̃∗ be the observations in D that aren’t in D∗

The observations in D̃∗ serve as test data

This provides a free estimate of pred for each tree
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Permutation variable importance

Consider the bth tree Tb

1. The OOB prediction accuracy of Tb is recorded

2. Then, the j th variable is randomly permuted in the OOB
samples

3. The prediction error is recomputed and the change in
prediction error is recorded

Intuition: If a variable is highly important, then the OOB
prediction error should decrease substantially after permuting the
OOB values for the variable
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Random forest
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Random Forest

Random Forest is a small extension of Bagging, in which the
bootstrap trees are decorrelated

The idea is, we draw a bootstrap sample and start to build a tree.

- At each split, we randomly select m of the possible p
predictors as candidates for the split.

- A new sample of size m of the predictors is taken at each split.

Usually, we use about m =
√
p

(this would be 7 out of 56 predictors for GDP data)

In other words, at each split, we aren’t even allowed to consider
the majority of possible predictors!
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Random Forest

What is going on here?

Suppose there is 1 really strong predictor and many mediocre ones.

- Then each tree will have this one predictor in it,

- Therefore, each tree will look very similar (i.e. highly
correlated).

- Averaging highly correlated things leads to much less variance
reduction than if they were uncorrelated.

If we don’t allow some trees/splits to use this important variable,
each of the trees will be much less similar and hence much less
correlated.

Bagging is Random Forest when m = p, that is, when we can
consider all the variables at each split.
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Random forest

An average of B i.i.d random variables has variance

σ2

B

An average of B random variables has variance

ρσ2 +
(1− ρ)σ2

B

for correlation ρ

As B →∞, the second term goes to zero, but the first term
remains

Hence, correlation of the trees limits the benefit of averaging
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Sensitivity and specificity for recessions

Sensitivity: The proportion of times we label recession, given
that recession is the correct answer.

Specificity: The proportion of times we label no recession, given
that no recession is the correct answer.

We can think of this in terms of hypothesis testing. If

H0 : no recession,

then

Sensitivity: P(reject H0|H0 is false), that is: 1 - P(Type II error)
Specificity: P(accept H0|H0 is true), that is: 1 - P(Type I error)
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Confusion matrix
We can report our results in a matrix:

Truth
Up Down

Our Up (A) (B)
Predictions Down (C) (D)

For each observation in the test set, we compare our prediction to
the truth.

The total number of each combination is recorded in the table.

The overall miss-classification rate is

(B) + (C)

(A) + (B) + (C) + (D)
=

(B) + (C)

total observations

What is the sensitivity/specificity?

(Sensitivity is (A)/[(A) + (C)], Specificity is (D)/[(B) + (D)])
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Tree results: Confusion matrices

Our
Predictions

Truth
Growth Recession Mis-Class

Null Growth 111 26
Recession 0 0 18.9%

Tree Growth 99 3
Recession 12 23 10.9%

Random Growth 102 5
Forest Recession 9 21 10.2%

Bagging Growth 104 3
Recession 7 23 7.3%
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Tree results: Sensitivity & specificity

Sensitivity Specificity

Null 0.000 1.000

Tree 0.884 0.891

Random 0.807 0.918
Forest

Bagging 0.884 0.936
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Out-of-bag error estimation for bagging

Truth
Growth Recession Miss-Class

OOB Bagging Growth 400 10
Recession 21 46 6.5%

Test Bagging Growth 104 3
Recession 7 23 7.3%

62



Results of Bagging on recession data
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Random Forest in R

require(randomForest)

out.rf = randomForest(Y~.,data=X,importance=T,mtry=ncol(X))

class.rf = predict(out.rf,X_0)

Notes:

• The importance statement tells it to produce the variable
importance measures

• the mtry = ncol(X) tells randomForest to consider all the
covariates at each split
(This particular choice corresponds to ?? (bagging))
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Random Forest in R

> out.rf

Call:

randomForest(formula = Y ~ ., data = X, import = T, mtry = ncol(X))

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 56

OOB estimate of error rate: 7.33%

Confusion matrix:

0 1 class.error

0 508 13 0.02495202

1 32 61 0.34408602
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Random Forest in R

#Permutation variable importance

> head(importance(out.rf,type=1))

MeanDecreaseAccuracy

Alabama 3.7277511

Alaska 1.7941463

Arizona 2.9659623

Arkansas 0.8341577

California 7.2973572

#Mean decrease variable importance

> head(importance(out.rf,type=2))

MeanDecreaseGini

Alabama 0.4551073

Alaska 1.6440170

Arizona 0.7025527

Arkansas 0.3503138

California 1.4616203

#variable importance plot:

varImpPlot(out.rf,type=2) 66




