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Clustering Introduction

When clustering, we seek to simplify the data via a small(er)
number of summarizing variables

PCA looks to find a low dimensional representation of the
observations that explain a good fraction of the sums of squares

Alternative clustering approaches instead look to find subgroups
among the observations in which they are similar
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Clustering Introduction

We will focus on two particular clustering algorithms

• K-means: Seeks to partition the the observations into a
pre-specified number of clusters.

• Hierarchical: Produces a tree-like representation of the
observations, known as a dendrogram.

There are advantages (disadvantages) to both approaches.

We can cluster observations on the basis of the covariates in order
to find subgroups of observations.
(It is common in clustering to refer to covariates as features)

Just as easily, we can find clusters of features based on the
observations to find subgroups in the features.

We will focus on clustering the observations. You can cluster
features by transposing X (that is, clustering on X>).
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K-means

1. Select a number of clusters K .
2. Let C1, . . . ,CK partition {1, 2, 3, . . . , n} such that

I All observations belong to some set Cj .
I No observation belongs to more than one set.

3. K-means attempts to form these sets by making within-cluster
variation, W (Ck), as small as possible.

min
C1,...,CK

K∑
k=1

W (Ck).

4. To Define W , we need a concept of distance. By far the most
common is Euclidean

W (Ck) =
1

|Ck |
∑

i ,i ′∈Ck

||Xi − Xi ′ ||22.

That is, the average (Euclidean) distance between all cluster
members.
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K-means

It turns out

min
C1,...,CK

K∑
k=1

W (Ck). (1)

is too hard of a problem to solve computationally (Kn partitions!).

So, we make a greedy approximation:

1. Randomly assign observations to the K clusters

2. Iterate until the cluster assignments stop changing:
I For each of K clusters, compute the centroid, which is the

p-length vector of the means in that cluster.
I Assign each observation to the cluster whose centroid is closest

(in Euclidean distance).

This procedure is guaranteed to decrease (1) at each step.

Warning: It finds only a local minimum, not necessarily the global
one. Which local min depends on step 1.
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K-means: A Summary
To fit K-means, you need to

1. Pick K (inherent in the method)

2. Convince yourself you have found a good solution (due to the
randomized approach to the algorithm).

It turns out that 1. is difficult to do in a principled way. We will
discuss these shortly.

For 2., a commonly used approach is to run K-means many times
with different starting points. Pick the solution that has the
smallest value for

min
C1,...,CK

K∑
k=1

W (Ck)

As an aside, why can’t we use this approach for picking K?

(We would choose K = n)
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K-means: Various K ’s
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K-means: Algorithm at Work
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K-means: Finding Good Local Minimum
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K-means in R

Like usual, the interface with R is very basic

n = 30

X1 = rnorm(n)

X2 = rnorm(n)

X = cbind(X1,X2)

K = 3

kmeans.out = kmeans(X, centers=K)

> names(kmeans.out)

[1] "cluster" "centers" "totss" "withinss"

[5] "tot.withinss" "betweenss" "size"

> kmeans.out$cluster

[1] 2 2 2 2 2 2 1 1 2 2 3 1 2 1 2 2 2

3 1 2 2 1 3 2 1 3 3 1 2 3
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K-means in R

Like usual, the interface with R is very basic

n = 30

X1 = rnorm(n)

X2 = rnorm(n)

X = cbind(X1,X2)

K = 3

kmeans.out = kmeans(X, centers=K)

> names(kmeans.out)

[1] "cluster" "centers" "totss" "withinss"

[5] "tot.withinss" "betweenss" "size"

> kmeans.out$cluster

[1] 2 2 2 2 2 2 1 1 2 2 3 1 2 1 2 2 2

3 1 2 2 1 3 2 1 3 3 1 2 3

plot(X, col=(kmeans.out$cluster+1), xlab="", ylab="",

pch=20, cex=2)
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K-means in R
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K-means in R

Another example

x = matrix(rnorm(50*2),ncol=2)

x[1:25,1] = x[1:25,1] + 3

x[1:25,2] = x[1:25,2] -4

kmeans.out = kmeans(x,centers=2,nstart=20)
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K-means in R

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

−2 0 2 4

−
6

−
4

−
2

0
2

Figure: Two clusters (which is the true number)
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K-means in R
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K-means in R: Comparison

R provides several objects in the kmeans output.

W (Ck) is the same as: kmeans(x,centers=K)$withinss

K∑
k=1

W (Ck) is the same as: kmeans(x,centers=K)$tot.withinss

> kmeans(x,centers=4,nstart=1)$tot.withinss

[1] 19.12722

> kmeans(x,centers=4,nstart=20)$tot.withinss

[1] 18.5526

> kmeans(x,centers=5,nstart=20)$tot.withinss

[1] 12.01893
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K-means using PCA
We can use the PC scores as the input to cluster as well to get a
different look at the data

Note: this is fundamentally different than using PC scores
to plot and visually inspect your data.

forest = read.table(’../data/forestfires.csv’,

sep=’,’,header=T)

forestRed = forest[,-c(3,4,13)]

fires = forest[,13]

pca.out = prcomp(forestRed,center=T,scale=T)

cum.sum = cumsum(pca.out$sdev^2/sum(pca.out$sdev^2))

> round(cum.sum,2)

[1] 0.29 0.44 0.57 0.69 0.79 0.86 0.90 0.95 0.98 1.00

nComps = min(which(cum.sum > .9))

> nComps

[1] 7
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K-means using PCA

kmeans.out = kmeans(pca.out$x[,1:nComps],centers=2,nstart=20)

Y = rep(1,nrow(forest))

Y[fires > 0] = 2

(Here, we are dividing the response fires into two groups, labeling them 1 and 2 to

match the output for kmeans)

> table(Y,kmeans.out$cluster)

Y 1 2

1 63 184

2 51 219

18



K-means using PCA
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Figure:
Left: Plot of PC scores, colored by cluster.
Right: Plot of PC scores, colored by correct cluster assignment: Red
means clustered to ‘zero area’ when ‘positive area’ was the label or the
opposite. Blue means clustered properly. 19



Choosing the Number of Clusters

Sometimes, the number of clusters is fixed ahead of time:

• Segmenting a client database into K clusters for K salesmen.

• Compressing an image using vector quantization (K is the
compression rate).

Most of the time, it isn’t so straight forward. Why is this a hard
problem?

• Determining the number of clusters is hard (for humans)
unless the data is low dimensional.

• It is just as hard to explain what we are looking for
(ie: in classification, we wanted a classifier that predicts well. In clustering, we

want a clusterer to ... what?)
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Choosing the Number of Clusters

Why is it important?

• It might make a big difference (concluding there are K = 2
cancer sub-types versus K = 3).

• One of the major goals of statistical learning is automatic
inference. A good way of choosing K is certainly a part of
this.
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Reminder: What does K -means do?

Given a number of clusters K , we (approximately) minimize:

K∑
k=1

W (Ck) =
K∑

k=1

1

|Ck |
∑

i ,i ′∈Ck

||Xi − Xi ′ ||22.

We can rewrite this in terms of the centroids as

W (K ) =
K∑

k=1

∑
i∈Ck

||Xi − X k ||22,

where X k ∈ R? (what is ?).

Answer: ? = p.
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Minimizing W in K
Of course, a lower value of W is better. Why not minimize W ?

plotW = rep(0,49)

for(K in 1:49){

plotW[K] = kmeans(x,centers=K,nstart=20)$tot.withinss

}
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Minimizing W in K
Of course, a lower value of W is better. Why not minimize W ?

A look at the cluster solution
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Between-cluster variation

Within-cluster variation measures how tightly grouped the clusters
are. As we increase K , this will always decrease.

What we are missing is between-cluster variation, ie: how spread
apart the groups are

B =
K∑

k=1

|Ck |||X k − X ||22,

where |Ck | is the number of points in Ck , and X is the grand mean
of all observations:

X =
1

n

n∑
i=1

Xi .
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Between-cluster variation: Example

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−1 0 1 2 3 4 5

−
4

−
2

0
2

x1

x2

●

●

●

X1

X2

X

B = |C1|||X 1 − X ||22 + |C2|||X 2 − X ||22
W =

∑
i∈C1
|C1|||X 1 − Xi ||22 +

∑
i∈C2
|C2|||X 2 − Xi ||22
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R tip detour
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x1Bar = apply(x[1:25,],2,mean)

x2Bar = apply(x[26:50,],2,mean)

xBar = apply(x,2,mean)

plot(x,xlab=’x1’,ylab=’x2’,col=kmeans(x,centers=2,nstart=20)$cluster+1)

points(x1Bar[1],x1Bar[2])

points(x2Bar[1],x2Bar[2])

points(xBar[1],xBar[2])

segments(x1Bar[1],x1Bar[2],x2Bar[1],x2Bar[2],col=’blue’)

text(x1Bar[1]+.15,x1Bar[2]+.15,expression(bar(X)[1]))

text(x2Bar[1]+.15,x2Bar[2]+.15,expression(bar(X)[2]))

text(xBar[1]+.15,xBar[2]+.15,expression(bar(X)))
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Can we just maximize B?
Sadly, no. Just like W can be made arbitrarily small, B will always
be increasing with increasing K .
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CH index

Ideally, we would like our cluster assignment to simultaneously
have small W and large B.

This is the idea behind CH index. For clustering assignments
coming from K clusters, we record CH score:

CH(K ) =
B(K )/(K − 1)

W (K )/(n − k)

To choose K , pick some maximum number of clusters to be
considered (Kmax = 20, for example) and choose the value of K
with the { smallest, largest } CH score:

K̂ = arg max
K∈{2,...,Kmax}

CH(K ).

Note: CH is undefined for K = 1.
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CH index

ch.index = function(x,kmax,iter.max=100,nstart=10,

algorithm="Lloyd")

{

ch = numeric(length=kmax-1)

n = nrow(x)

for (k in 2:kmax) {

a = kmeans(x,k,iter.max=iter.max,nstart=nstart,

algorithm=algorithm)

w = a$tot.withinss

b = a$betweenss

ch[k-1] = (b/(k-1))/(w/(n-k))

}

return(list(k=2:kmax,ch=ch))

}
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Revisting simulated example

x = matrix(rnorm(50*2),ncol=2)

x[1:25,1] = x[1:25,1] + 3

x[1:25,2] = x[1:25,2] -4

We want to cluster this data set using K-means with K chosen via
CH index.
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CH plot
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Corresponding solution
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Alternate approach: Gap statistic

While true that W (K ) keeps dropping in K , how much it drops
might be informative.

The gap statistic is based on this idea. We compare the observed
within-cluster variation W (K ) to the within-cluster variation we
would observe if the data were uniformly distributed Wunif (K ).

Gap(K ) = logW (K )− logWunif (K )

After simulating many logWunif (K ), we compute its standard
deviation s(K ). Then, we choose K by

K̂ = min{K ∈ {1, . . . ,Kmax} : Gap(K ) ≥ Gap(K + 1)− s(K + 1)}.
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Gap statistic: Summary

I don’t want to dwell too long on Gap(K ), other than to say the
following:

• As Gap(K ) is defined for K = 1, it can pick the null model
(all observations in 1 cluster).

• In fact, this is what it is best at (why?).

• It can be found using the R package SAGx or the package lga.
In both cases the function is called gap.

• Beware: these functions are poorly documented. It’s unclear
what clustering method/algorithms they are using.
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