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Lower dimensional embeddings

Remember: We have data (X1,Y1), . . . , (Xn,Yn) where Xi ∈ Rp

for each i = 1, . . . , n.

The idea behind model selection is that a subset of the variables
(X1,X2, . . . ,Xp) are important for predicting the response.

This is basically like saying there is a lower dimensional space that
contains most of the ‘action’
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Lower dimensional embeddings: First Example

Suppose we have predictors X1 and X2 (there is no response, yet):
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Lower dimensional embeddings: First Example
When we are doing variable selection, we are implicitly using the
red dots (in this case, setting X2 to zero):
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Lower dimensional embeddings: First Example
Looking at these alternatives at the same time, we can see that

• We more faithfully preserve the structure of the data by
keeping X1 and setting X2 to zero than the opposite
• We don’t lose that much structure by setting X2 to zero.
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Lower dimensional embeddings: Second
Example

An important feature of the First Example is that X1 and X2 aren’t
correlated with each other. What if they are correlated?
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Lower dimensional embeddings: Second
Example

When we are doing variable selection, we are implicitly using the
red dots (in this case, setting X2 to zero):

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

x1

x 2 ● ●● ●●● ● ●●● ●● ●● ●● ●●● ● ●●●● ●● ●● ● ●

7



Lower dimensional embeddings: Second
Example

Alternatively, we can select X2 only, in which case we are setting
X1 to zero:
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Lower dimensional embeddings: Second
Example

We do lose a lot of structure by setting X2 to zero.
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Lower dimensional embeddings: Comparison of
Examples

Correlation complicates the model selection problem

Eliminating variables tcan significantly change the structure

There isn’t that much structurally different between the First and
Second Examples

In fact, the Second Example is just a rotation of the First Example.
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Lower dimensional embeddings: Comparison of
Examples

If we knew how to rotate our data so that the Second Example
looked like the First Example, we would be able to preserve more
structure when doing model selection.
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Lower dimensional embeddings: We Can!

It turns out that Principal Components Analysis (PCA) gives us
exactly this rotation.

I don’t want to overwhelm you with definitions, so this is all I’ll say
about formally defining PCA

• PCA finds the rotation that maximizes the variance explained

• PCA finds the rotation that minimizes the squared error

• PCA can be computed by getting the SVD of X −X = UDV>

(The UD are the principal components) and V is the rotation.
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Lower dimensional embeddings: Comparison of
Examples

Now, using the Principal components, we can again see that by
setting PC2 to zero doesn’t lose too much structure.
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Caveat: Both X1 and X2 are mixed together inside both
PC1 and PC2. So, this approach doesn’t do vari-
able selection, it does dimension reduction
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PCA in R

PCA.out = prcomp(X,scale=TRUE)

or

PCA.out = princomp(X,scale=TRUE)

Only use prcomp, not princomp. Much more numerically
stable!

We can also get the objects ourselves:

svd.out = svd(scale(X,scale=TRUE))
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PCA in R

PCA.out = prcomp(X,scale=TRUE)

> names(PCA.out)

[1] "sdev" "rotation" "center" "scale" "x"

> dim(X)

[1] 100 10

> dim(PCA.out$rotation)

[1] 10 10

> dim(PCA.out$x)

[1] 100 10

The coordinates of...

• the observations are in PCA.out$x
(Known as scores)

• the covariates are in PCA.out$rotation
(Known as loadings)
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PCA in R

> PCA.out$rotation[1:2,1:3]

PC1 PC2 PC3

[1,] -0.3797434 0.007642462 -0.3559232

[2,] -0.2505855 0.479266913 -0.1575462

> PCA.out$x[1:2,1:3]

PC1 PC2 PC3

[1,] -1.3056426 -0.5296034 -0.9157294

[2,] -0.3535175 0.5285959 1.4482028

> svd.out$v[1:2,1:3]

[,1] [,2] [,3]

[1,] -0.37974339 0.007642462 -0.3559232

[2,] -0.25058548 0.479266913 -0.1575462

> UD = svd.out$u %*% diag(svd.out$d)

> UD[1:2,1:3]

[,1] [,2] [,3]

[1,] -1.3056426 -0.5296034 -0.9157294

[2,] -0.3535175 0.5285959 1.4482028
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To scale or not scale?

If we do either

PCA.out = prcomp(X,scale=TRUE)

or

svd.out = svd(scale(X,scale=TRUE))

we need to decide whether to scale the covariates
(Important: always center the covariates)

As a general rule, scale if the covariates are measured in different
units

The next set if lecture notes provide examples of when to scale
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