Regression IV: Data Analysis Example
 -Applied Multivariate Analysis-

Lecturer: Darren Homrighausen, PhD

An Example: Problem

The Portuguese Forest Service wants to find a model for predicting the severity of forest fires at a specific national park (Montesinho).

We've been hired to look at their data.
We wish to find important variables that are associated with the severity of fires.

An Example: Data Description

```
fire = read.table('../data/forestfires.csv',sep=',',
    header=T)
# Variables are:
#1. X - x-axis spatial coordinate within the
Montesinho park map: 1 to 9
#2. Y - y-axis spatial coordinate within the
Montesinho park map: 2 to 9
#3. month - month of the year: 'jan' to 'dec'
#4. day - day of the week: 'mon' to 'sun'
#5. FFMC - FFMC index from the FWI system: 18.7 to 96.20
#6. DMC - DMC index from the FWI system: 1.1 to 291.3
#7. DC - DC index from the FWI system: 7.9 to 860.6
#8. ISI - ISI index from the FWI system: 0.0 to 56.10
#9. temp - temperature in Celsius degrees: 2.2 to 33.30
#10. RH - relative humidity in %: 15.0 to 100
#11. wind - wind speed in km/h: 0.40 to 9.40
#12. rain - outside rain in mm/m2 : 0.0 to 6.4
```

Data visualization: Average fire area


```
x = X$x
y = X$y
x.un = sort(unique(x))
y.un = sort(unique(y))
plot.resp = rep(0,length(x.un)*length(y.un))
sweep = 0
for(i in x.un){
    for(j in y.un){
        sweep = sweep + 1
        plot.resp[sweep] = mean(fire$area[x == i & y == j])
    }
}
plot.resp.mat = matrix(plot.resp,nrow=length(x.un),
        ncol=length(y.un), byrow=T)
grid.list = list(x = x.un, y=y.un,z = plot.resp.mat)
require(fields)
image.plot(grid.list)
```


Training vs. TESting

Suppose we set aside a subset of our data to evaluate our predictive capabilities

This set aside data is known as the test data
The remaining data that is used for estimation is the training data
Note: This is not quite the same as CV. While using CV we are only using the training data

Here is an example of how we might split this forest fire data

```
n = nrow(fire)
nTrain = round(n*0.98)
nTest = n - nTrain
permute = sample(1:n,n,replace=FALSE)
train = permute[1:nTrain]
test = permute[(nTrain+1):n]
```


Transformations and object creation

Due to the skewness in 'area,' we will log transform the response.
The 'plus 1 ' is due to many of the fires not burning any ground.
$\log A r e a=\log (1+f i r e \$ a r e a)$
Ytrain = logArea[train]
Ytest $=$ logArea[test]
$\mathrm{X} \quad=$ fire[,names(fire)!='area']

Plot for Day

Plot for Day

plot(fire\$day,log(1+fire\$area), ylab="log(area)")
$\mathrm{X}=\mathrm{X}[$, names $(\mathrm{X})!=$ 'day' $]$

What About Month?

What About Month?

Some months might be important. We'll keep them. This leaves:
Xtrain $=X[t r a i n$,
Xtest $=\mathrm{X}$ [test,]

Pairs plot (or Scatterplot Matrix)

Further data processing

Based on these plots, it appears that turning 'rain' into a dichotomous variable (equal to either 0 or 1) is appropriate.

We define a new variable 'rain'

```
rain = X$rain
rain = rain > 0
Xtrain$rain = rain[train]
Xtest$rain = rain[test]
```

Also, we rescale the quantitative entries in $\mathbb{X}_{\text {train }}$

```
quant = names(X)!=c('month')
Xtrain[,quant] = scale(Xtrain[,quant])
trainCenter = attributes(scale(Xtrain[,quant]))$'scaled:center'
trainScale = attributes(scale(Xtrain[,quant]))$'scaled:scale'
```

And we rescale the quantitative entries in $\mathbb{X}_{\text {test }}$

```
Xtest[,quant] = t(t(Xtest[,quant]) - trainCenter)
Xtest[,quant] = t(t(Xtest[,quant])/trainScale)
```


Linear Model

x	0.058989	0.032494	1.815	0.07009
y	-0.016884	0.061438	-0.275	0.78358
monthaug	0.148795	0.841515	0.177	0.85973
monthdec	2.185436	0.816518	2.677	0.00769

Forward

For doing Forward/Backward, we can treat the month variable as a group or individually. As a group, we do:

```
null = lm(Ytrain~1,data=as.data.frame(Xtrain))
full = lm(Ytrain~.,data=as.data.frame(Xtrain))
out = step(null,scope=list(lower=null,upper=full),
    direction='forward')
Step: AIC=344.62
Ytrain ~ DMC + wind + rain + x
        Df Sum of Sq RSS AIC
<none> 987.60 344.62
+ RH 1 2.980 984.62 345.06
+ DC 1 1.948 985.65 345.60
+ temp 1 1.778 985.82 345.69
+ ISI 1 1.708 985.89 345.73
+ FFMC 1 0.637 986.96 346.29
+ y 1 0.056 987.54 346.59
+ month 11 35.450 952.15 347.72
```


Forward: Individual Month Terms

We force R to consider them individually by creating:

```
XtrainInd = model.matrix(~., data=Xtrain,
    month=contrasts(Xtrain$month, contrasts=F))
```

```
### Forward Selection, ungrouped month
null = lm(Ytrain~1,data=as.data.frame(XtrainInd))
full = lm(Ytrain~.,data=as.data.frame(XtrainInd))
out = step(null,scope=list(lower=null,upper=full),
    direction='forward')
```


Forward

All Subsets

library(leaps)				
```leaps.plot =regsubsets(Ytrain~.,data=Xtrain, nbest=10, method='exhaustive')```				
out = summary(leaps.plot)				
out\$which[which.min(out\$cp),]				
(Intercept)	x	y	monthaug	monthdec
TRUE	TRUE	FALSE	FALSE	TRUE
monthfeb	monthjan	monthjul	monthjun	monthmar
FALSE	FALSE	FALSE	FALSE	FALSE
monthmay	monthnov	monthoct	monthsep	FFMC
FALSE	FALSE	FALSE	TRUE	FALSE
DMC	DC	ISI	temp	RH
FALSE	FALSE	FALSE	TRUE	FALSE
wind	rainTRUE			
TRUE	TRUE			

## Ridge Regression: Get minimum



out.ridge $=c v . g l m n e t(x=X t r a i n I n d, y=Y t r a i n, a l p h a=0$, standardize=FALSE)
min.lambda $=\min (o u t . r i d g e \$ l a m b d a)$
lambda.new $=$ seq(min.lambda*10,min.lambda*.01,length=100)
out.ridge $=c v . g l m n e t(x=X t r a i n I n d, y=Y t r a i n, a l p h a=0$,

## Ridge Regression: $\max (\lambda)$



```
out.ridge = cv.glmnet(x=XtrainInd,y=Ytrain,alpha=0,
 standardize=FALSE)
par(mar=c(5.1 ,6.1 ,4.1 ,2.1))
barplot(out.ridge$beta[,1],horiz=T, cex.names=.6,las=1)

\section*{Ridge Regression}

plot(log(ridge.out\$lambda), ridge.out\$cvm, xlab='log(lambda)', ylab='CV error',main='Ridge')
abline(v=log(ridge.out\$lambda[which.min(ridge.out\$cvm)]))

\section*{LASSO}

lasso.cv.glmnet \(=\) cv.glmnet(\(x=\) XtrainInd, \(y=Y t r a i n, a l p h a=1\), standardize=FALSE)
lamHat = lasso.cv.glmnet\$lambda[which.min(lasso.cv.glmnet\$cvm)] plot (log(lasso.cv.glmnet \$lambda), lasso.cv.glmnet \$cvm, xlab='log(lambda)',ylab='CV error', main='Lasso')
abline(v=log(lamHat))

\section*{Ridge and lasso Paths}

\section*{Comparison: Coefficients}

\section*{Comparison: prediction}

Each method has its own prediction function.
\(R\) will detect what type of prediction function is required
```

pred.lm = predict(out.lm,as.data.frame(Xtest))
pred.lasso = predict(lasso.cv.glmnet,XtestInd,s='lambda.min')
p.val = summary(out.lm)\$coef [,4]
thresh = .1
out.lmSig = lm(Ytrain~.,
data=as.data.frame(XtrainInd[,p.val<thresh]))
pred.lmSig = predict(out.lmSig,
as.data.frame(XtestInd[,p.val<thresh]))
predError = function(pred,test.data){
return(sqrt(mean((pred - test.data)^2)))
}
predError(pred.lasso,Ytest) \#For example

```

\section*{Comparison: PREDICTION}

Let's see how well these methods did at prediction:
\begin{tabular}{lr}
Method & Prediction Error \\
\hline LS & 224.63 \\
LS (SIGNIFICANT) & 16.42 \\
FORWARD (GROUPED) & 93.17 \\
FORWARD (UNGROUPED) & 4.21 \\
RIDGE & 9.10 \\
LASSO & 1.10 \\
\hline
\end{tabular}

Here:
- LS (SIGNIFICANT): Keep covariates with p-value \(\leq 0.1\)
- Forward (Grouped): Treat month as a group
- Forward (ungrouped): Treat month individually

\section*{Some comments on this analysis}
- If I did this analysis over, I would manually screen more of the months out before starting (or group them).
- There is a newer technique known as grouped lasso that can remove the variables as a group.
- Ridge did much worse than lasso and forward at prediction. This is not always the case.```

