TEXT PROCESSING: OVERVIEW

-APPLIED MULTIVARIATE ANALYSIS-

Lecturer: Darren Homrighausen, PhD



WHO WAS THE FIRST POPE?

Suppose we are having a bar-room debate with our friends about
the origins of the papacy

How we would settle this debate has changed radically in the last
20 years.



WHAT WE USED TO DO

1. Go to library 4. Search
2. Card catalog 5. No book
3. Get metadata 6. Wait

This was slow and expensive..



WHAT WE DO

5:08 PM

Goc 13\( who was first pope

\mages Videos News More

List of popes- W\K\ped\a‘ the free
encyc\oped\d

sn.wiki mmm, L P
Although the’ hanges are N° \onger
con\roue | of modem \ist:

include !

List of pO!

wadvent-0r9
o list of every sind pope " tne \ast
ronologica! order. LN



INFORMATION RETRIEVAL AND REPRESENTATIONS

How does Google do this?

INFORMATION RETRIEVAL: given a set of documents (such as
webpages, emails, news articles,..), our problem is to the K
most similar documents to a given query (e.g. “who was the first

pope?”).
The first step is to think of a way of these documents.

We want the representation to:

e be both easy to generate from the documents and easy to
work with

e highlight important aspects of the documents and suppress
unimportant ones

Like always, there is a between these two ideas

ot



AN INTUITIVE FIRST IDEA

WIKIPEDIA
The Free Encyclopedia

vain page

Surtentevents
3andom article

Aticle Talk Read Edit View history |Search

List of popes

From Wikipedia, the free encyclopedia

Not o be contused with List of Coptic Orthodox Popes of Alexandiia.
For a graphical representation of this lst, see List of popes (graphical). For a list of popes by neme, see Papal name.

‘This chronological list of popes corresponds to that given in the Annuario Pontifcio under the heading "l Sommi Pontefici Romani" (The
Supreme Pontifs of Rome), excluding those that are expiicitly indicated as antipopes. Published every year by the Roman Curia, the
Annuario Pontificio attaches no consecutive numbers to the popes, stating that it is impossible to decide which side represented at various

Nikimedia Shop
Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact Wikipedia
Toolbox
Printexport

Languages
Afrkaans,

Benapyoxan
Benapyckan

times  in partcular regarding Pope Leo VI, Pope Benedict V and some mic-11th-century popes. (1

“The 2001 edition of the Annuario Pontifciointroduced "almost 200 corrections to is existing biographies of the popes, from St Peter to John
Paul II". The corrections concemed dates, especially in the first two centuries, birthplaces and the family name of one pope.'

“The term pope (Latin: papa “father')is used in several Churches to denote their high spirtual leaders (for example Coptic Pope). This title in
English usage usually refers o the head of the Roman Catholic Church. The Roman Catholic pope uses various tiles by tradition, including
Papa, Summus Pontifex, Pontifex Maximus, and Servus servorum Dei. Each title has been added by unique historical events and uniike
other papal prerogatives, is not incapable of modification.

Hermannus Contractus may have been the fist historian to number the popes commmus\y His list ends in 1049 with Pope Leo IX as.
number 154. Several changes were made to the list during 2 long time.
Popesloct Stophen was considerod egtmals undr he name Slsphen il the 1961 ion, when his name was erased. Afhough these
changes are no longer controversial, a number of modern lsts still include this "first Pope Stephen II". It is probable that this is because
they are based on the 1913 edition of the Catholic Encycopedia, which is i the public domain.

A significant number of these popes have been recognized as saints, including 48 out of the first 50 consecutive Popes

Contents ]
1 Chronological lstof popes
1 15t-51h centuries.

Bikol Central
Burapokn
Brezhoneg
Catala
Jr

1
1.3 16th-201h centuries
1.4 21stcentury.
1.5 Religious orders

2 Notes on numbering of popes

3Seaalso

What if we tried to represent the

meaning of documents? For instance, .

we could take this webpage and record beginning.papacy
popes = c(’St. Peter’

name.origin = ’latin for father’

this information

Plague commemrating the popes buried &
in St Peter' (iho¥ names i Latin and tho
yoar o thoi buria)

37

Create account & Log in

’St. Linus’



A PROBLEM

This approach is essentially unworkable

While good in terms of the second criteria (highlighting important
features), it is terrible in terms of the first (easily generated and
used)

This speaks to needing a different representation



BAG-OF-WORDS REPRESENTATION

It turns out a very simple minded approach is probably the best
developed so far. Take all the words in the document(s) and count
how many times they appear and stick this in a long vector (or
matrix, if multiple documents).

For example:

pope = 154, catholic = 17, vatican = 12, jesus = 2, the = 304,..

This is very easy to generate (once we tweak the scripting to
ignore certain things).

But is it too much of a reduction?



BAG-OF-WORDS REPRESENTATION

Idea: By itself “pope” can mean
different things

But, we can learn from the
in the document

e Words like ‘football’, ‘NFL’,
‘lineman’, and ‘arizona’ suggest
the wrong type of pope

e Words like ‘pontiff’, ‘vatican’,
‘catholic’, and ‘italy’ suggest
the right type of pope

e Words like ‘cardinal’ are not
informative




COUNTING WORDS
Recall problem: given a query and a set of documents, find the K
documents most similar to the query

Countings words:

1.

ot

Make a list of all the words present in the documents and the
query

. Index the words w =1,..., W

(for example, in alphabetical order)

Index the documents d =1,...,D
(just pick some order)
For each document d, count how many times each word w is
used (can be, and most likely is, zero), and call this count
Xgw. The vector Xy = (Xg1, ..., Xqw) ' gives the

for the d*" document

Lastly, do the same thing for the query Y = (Y1,..., Yw)'
and Y, is the count for word w in the query
10



SIMPLE EXAMPLE

DOCUMENTS:

d = 1: "This statistics class is classy’
d = 2: “statistics say this statistics class has no class’

QUERY:

“classy statistics class”

this | statistics | class | classy | is | has | no | say
X1 | 1 1 1 1 11 00| O0
Xo | 1 2 2 0 0] 1 1 1
Y| O 1 1 1 0| 0|0 O

This is known as a document-term matrix

11



DISTANCES AND SIMILARITY MEASURES

We represented each document Xy and query Y in a convenient
vector format. Now, how do we measure similarity?

Measures of distance between W-dimensional vectors X and Y

e The /5 or distance is
w
X = Y2 = | D (Xu — Yu)?
w=1
e The /; or distance is

w
X = Y]2=> [Xw = Yl
w=1

There are many others

Basic 1DEA: Find the K vectors X that are ‘closest’
12



BIGGER EXAMPLE

DOCUMENTS: Suppose we have 8 Wikipedia articles, 4 about the
TMNT (Leonardo, Raphael, Michelangelo, and Donatello) and
about the 4 renaissance artists of the same name

» 256 00

QUERY: “Raphael is cool but rude, Michelangelo is a party dude!”

13



POTENTIAL PROBLEMS

What are the potential problems with performing this query?

14



POTENTIAL PROBLEMS

What are the potential problems with performing this query?

e Unequal document sizes (example: TMNT Michelangel is
3330 words vs 6524 words for the artist). Also, the query is
only 7 words long.

e Stemming
e Punctuation

e Common words (‘raphael’ occurs 70 times in TMNT article
and 144 in the artist's article) provide little discrimination

14



DISTANCES

If we don't account for any of these problems, we get the following
subset of the document-term matrix along with the distance to the

query

but cool dude party michelangelo raphael rude dist

doc 1 19 0 0 0 4 24 0 309.5
doc 3 7 0 4 3 7 23 0 331.0
doc 4 2 0 0 0 4 11 0 220.2
doc 5 17 0 0 0 9 6 0 928.5
doc 6 36 0 0 0 17 101 0 646.5
doc 7 10 0 0 0 159 2 0 527.3
query 1 1 1 1 1 1 1 0.0

Raphael the Turtle
Donatello the Artist
3. Michelangelo the Turtle



DISTANCES

If we don't account for any of these problems, we get the following
subset of the document-term matrix along with the distance to the

query

but cool dude party michelangelo raphael rude dist

doc 1 19 0 0 0 4 24 0 309.5
doc 3 7 0 4 3 7 23 0 331.0
doc 4 2 0 0 0 4 11 0 220.2
doc 5 17 0 0 0 9 6 0 928.5
doc 6 36 0 0 0 17 101 0 646.5
doc 7 10 0 0 0 159 2 0 527.3
query 1 1 1 1 1 1 1 0.0

Raphael the Turtle
Donatello the Artist
3. Michelangelo the Turtle



VARYING DOCUMENT LENGTHS AND NORMALIZATION
Different documents have different lengths. Total word counts:

doc 1 doc 2 doc 3 doc 4 doc 5 doc 6 doc 7 doc 8 query
3114 1976 3330 2143 8962 6524 4618 1766 7

Note that the documents have quite different lengths

We should them in some way

e DOCUMENT LENGTH: Divide X by its sum

w
XX/ Xu
w=1

e /> LENGTH: Divide X by its Euclidean length

X X/[IX]l2

16



BACK TO OUR EXAMPLE

dist/doclen dist/12len

doc 1 0.3852650 1.373041
doc 2 0.3777634 1.321871
doc 3 0.3781194 1.319048
doc 4 0.3887862 1.393433
doc 5 0.3906030 1.404972
doc 6 0.3820197 1.349070
doc 7 0.3812202 1.324758
doc 8 0.3935327 1.411486
query 0.0000000 0.000000
Great!

So far, we've dealt with the varying document lengths. What
about some words being more helpful than others?

, especially, are not going to help find relevant
documents



How DO WE DEAL WITH COMMON WORDS?

INTUITION: Words that do not appear very often should help us
discriminate better, as they are by implication very specific to that
document

To deal with common words we could just keep track of a list of
words like ‘the’, ‘this’, ‘that’, etc. and exclude them from our
representation.

This is both too crude and time consuming

18



COMMON WORDS AND IDF WEIGHTING

weighting is smarter and more
efficient

e For each word, w, let n,, be the number of documents that
contain this word

e The, for each vector Xy and Y, multiply the wt" component
by
IDF(w) = log(D/ny,)

Note that if a word appears in every document, then it gets a
weight of zero.

If ny, < D, then log(D/ny) > 0. In particular, if D >> n,,, then
D/n,, is also large (example: D =100, n,, =1, IDF(w) ~ 4.6)

19



PUTTING IT ALL TOGETHER

Think of the document-term matrix

word 1 | word 2 | ... | word W

doc 1
doc 2

doc D

scales each row by something (divides a row

vector X by its sum or £ norm)
scales each column by something (multiplies

the wt column by IDF(w))
e We can use both, just normalize first and then perform IDF

20



BACK TO OUR EXAMPLE

(tmnt
(tmnt
(tmnt
(tmnt
(real
(real
(real
(real

W N U WN

query (tmnt

dist/doclen/IDF
leo) 0.623
rap) 0.622
mic) 0.620
don) 0.623
leo) 0.622
rap) 0.622
mic) 0.622
don) 0.624
leo) 0.000

What happened?

[1

7
[13]
[19]
[25]
[311
[371
[43]

T— [Tp—
"-part" "-year-old"
"ability" "able"
"abroad" "abruptly"
"absorbing" "abstemious"
"academic" "academies"
"acceptance" "accepted"

"accompany" "accomplish"

[—

"abandoned"
"abode"
"absence"
"absurd"
"academy"
"accepting"

"accordance"

"--dead"
"abbeville"
"about"
"absent"
"abundance"
"accademia"
"accident"
"according"

frp—
"abbey"
"above"
"absolute"
"abundantly"
"accent"
"acclaimed"
"account"

"-foot"
"abilities"
"abrams"
"absorbed"
"abuse"
"accept"
"acclimate"
"accounts"

21



STEMMING

Having words ‘connect’, ‘connects’, ‘connected’, ‘connecting’,
‘connection’, etc. in our representation is extraneous.
reduces all of these to a single stem word ‘connect’

Can a simple list of rules provide perfect stemming? ‘relate’
vs. ‘relativity’ or ‘sand’ and ‘sander’ or ‘wand’ and ‘wander’ or

‘man’ and ‘many’ or...

Stemming also depends on the . It is easier in English
than in:
e German (fusional or agglomerative language) e.g.
Hubschrauberlandeplatz = helicopter landing pad
e Turkisk (agglutinative language) e.g.

Turklestiremedigimizlerdensinizdir = maybe you are one of those whom we were
not able to Turkify

22



STEMMING

Before

[1] "——-n [Tp— Jrp—— "_—dead" fr— "_foot"

[7] "-part" "-year-old" "abandoned" "abbeville" "abbey" "abilities"
[13] "ability" "able" "abode" "about" "above" "abrams"
[19] "abroad" "abruptly" "absence" "absent" "absolute" "absorbed"
[256] "absorbing" "abstemious" "absurd" "abundance" "abundantly" "abuse"
[31] "academic" "academies" '"academy" "accademia" "accent" "accept"
[37] "acceptance" "accepted" "accepting" ‘"accident" "acclaimed" "acclimate"
[43] "accompany" "accomplish" "accordance" "according" "account" "accounts"

After
— [—— [— - " [— n_ "

[11 X dead X foot
[7] "-part" "-year-old" "abandon" "abbevill" "abbey" "abil"

[13] "abl" "abod" "abov" "abram" "abroad" "abrupt"
[19] "absenc" "absent" "absolut" "absorb" "abstemi" "absurd"
[25] "abund" "abus" "academ" "academi" "accademia" "accent"
[31] "accept" "accid" "acclaim" "acclim" "accommod" "accompani"
[37] "accomplish" "accord" "account" "accumul" "accur" "accus"

[43] "achiev" "ackerman" "acknowledg" "acolyt" "acquir" "act"



BACK TO OUR EXAMPLE, AFTER STEMMING

d25el

-1
6 7

QUERY: “Raphael is cool but rude, Michelangelo is a party dude!”

doc
doc
doc
doc
doc
doc
doc
doc

00 N O U W

Q
[
[}
R

~<

(tmnt
(tmnt
(tmnt
(tmnt
(real
(real
(real
(real

dist/doclen/IDF

leo) 0.965
rap) 0.870
mic) 0.867
don) 0.971
leo) 0.927
rap) 0.971
mic) 0.954
don) 0.930
0.000

24



Text processing in R

CIRY= = =» T 9ac
25



TEXT PROCESSING IN R
The basic commands are:

library(tm)
corp = VCorpus(VectorSource(docs))
dtm = DocumentTermMatrix(corp,

control=list (tolower=TRUE,
removePunctuation=TRUE,
removeNumbers=TRUE) )

For example:

exampleDoc = c(’I really want a real pony not a wanted poster’)

exampleCorp = VCorpus(VectorSource (exampleDoc))

dtm = DocumentTermMatrix(exampleCorp,
control=list(tolower=TRUE,
removePunctuation=TRUE,
removeNumbers=TRUE) )

> colnames(dtm)
[1] "not" ‘“pony" '"poster" "real" ‘"really" "want" "wanted"

26



TEXT PROCESSING IN R

exampleDocl c(’I really want a real pony not a wanted poster’)

exampleDoc2 = c(’Real men do not ride ponies, they ride rockets’

exampleDoc3 = c(’I had a pony named rocket, man’)

exampleDocs = c(exampleDocl,exampleDoc2,exampleDoc3)

exampleCorp = VCorpus (VectorSource (exampleDocs))

dtm = DocumentTermMatrix(exampleCorp,
control=list(tolower=TRUE,
removePunctuation=TRUE,
removeNumbers=TRUE) )

> colnames (dtm)

[1] "had" ‘"man" "men" "named" "not" "ponies"
"pony" "poster" ‘'"real" "really" '"ride" "rocket"
"rockets" "they" '"want" '"wanted"
> dtm

A document-term matrix (3 documents, 16 terms)

Non-/sparse entries: 19/29

Sparsity 1 60%

Maximal term length: 7

Weighting : term frequency (tf) 27



WHY SPARSITY?

REMINDER: Sparse matrix structures can be really helpful
In text processing, sparsity is everything

| have a dataset with approximately 30,000 words and 52,000
documents. If | stored this naively, this would take

64bits x 30,000 % 52, 000
8bytes x 210kb x 210mb * 210gigabytes

storage = = 11.622gb

28



TEXT PROCESSING IN R

We can look directly at the document-term matrix

> inspect (dtm)

[omitted]

had man men named not ponies pony poster real really ride rocket
0O 0 O 0o 1 0 1 1 1 1 0 0

o o0 1 0o 1 1 0 0 1 0 2 0

1 1 0 1 0 0 1 0 0 0 0 1

rockets they want wanted

0 0 1 1
1 1 0 0
0 0 0 0

29



TEXT PROCESSING IN R

Reminder, here is our index (W = 16)

> colnames(dtm)

[1] Ilhadll llmanll llmenll llnaInedll
"pony" "poster" '"real" '"really"
"rockets" "they" '"want" "wanted"

"ponies"
"rocket"

There are two issues here: common words and stemming. We can

with both relatively easily in R

30



DEALING WITH COMMON WORDS AND STEMMING

> dtm.stem = DocumentTermMatrix(exampleCorp,
control=list(tolower=TRUE,
removePunctuation=list (preserve_intra_word_dashes=T),
removeNumbers=TRUE,
stemming=TRUE,
stopwords = TRUE,
weighting=weightTfIdf,
wordLengths = c(3,10))

e removePunctuation: Here, | have it keep between word
dashes to maintain hyphenation

e stemming: Should | perform stemming?
e stopwords: These are common transition words that are

called . These are words like ‘the’, ‘at’, ‘a
e weighting: What weighting scheme should | do?
e wordLengths: What length of words should | accept?
31



TEXT PROCESSING IN R: NEW DICTIONARIES

Reminder, here is our index (W = 16)

> colnames(dtm)

"had" "man" "men" "named" "not" "ponies"

"pony" "poster" '"real" ‘'"really" ‘'"ride" '"rocket" '"rockets"
"they" ‘'"want" '"wanted"

> colnames(dtm.stem)

"name" "poni" "poster" "real"

"realli" "ride" "rocket"

What happens if | don't remove stop words?
(set stopwords = FALSE)

> colnames (dtm.nostop)
[1] Ildoll ’lhadll llmanll llmenll llnamell llnot" llponill

"poster" "real" "realli" "ride" "rocket" "they" "want"

32



TEXT PROCESSING IN R: INPUTS TO DISTANCES

> inspect(dtm.stem)
A document-term matrix (3 documents, 7 terms)

Non-/sparse entries: 8/13
Sparsity 1 62%
Maximal term length: 6

Weighting : term frequency - inverse document frequency

(normalized) (tf-idf)

Terms

name poni poster real realli ride rocket
1 0.0000000 0.0 0.3962406 0.1462406 0.3962406 0.000000 0.000
2 0.0000000 0.0 0.0000000 0.1169925 0.0000000 0.633985 0.116
3 0.5283208 0.0 0.0000000 0.0000000 0.0000000 0.000000 0.194

# So, Doc 1 and Doc 2 are

> mydtm = as.matrix(dtm.stem)

sqrt (sum((mydtm[1,]-mydtm[2,]1)°2))
[1] 0.8546888

\

33



TEXT PROCESSING IN R: HAZARDS OF OPEN-SOURCE
SOFTWARE

You may need to do the following at the beginning of your code:

Sys.setenv (NOAWT=TRUE)
library(RWeka)
library(rJava)

Note: install these packages first

34





