Text Processing: Overview
 -Applied Multivariate Analysis-

Lecturer: Darren Homrighausen, PhD

Who was the first pope?

Suppose we are having a bar-room debate with our friends about the origins of the papacy

How we would settle this debate has changed radically in the last 20 years.

What we used to do

1. Go to library
2. Card catalog

3. Search

4. No book

5. Wait

This was slow and expensive..

What we do now

Information RETRIEVAL AND REPRESENTATIONS

How does Google do this?
Information retrieval: given a set of documents (such as webpages, emails, news articles,..), our problem is to retrieve the K most similar documents to a given query (e.g. "who was the first pope?").

The first step is to think of a way of representing these documents.
We want the representation to:

- be both easy to generate from the documents and easy to work with
- highlight important aspects of the documents and suppress unimportant ones

Like always, there is a trade-off between these two ideas

An intuitive first idea

WikipediA
The Free Encyclopedia

Nain page

 ontents eatured content Current events landom artcie Jonate to Wikipedia Mkimedia ShopInteraction Help About Wikipedia Community portal Recent changes Contact Wikipedia

Toolbox
Printexport
Languages
A'rikaans
الالقربية
Aragonés
Aagones
sturianu
Беларуская
Беларуская
тарашкевіца)
Bikol Central
Български
Brezhoneg
Catala

Article Talk
Read Edit View history Search

List of popes

From Wikpedia, the free encyclopedia
Not to be confused with List of Coptic Orthodox Popes of Alexandria.
For a graphical representation of this list, see List of popes (graphical). For a list of popes by name, see Papal name
This chronological list of popes corresponds to that given in the Annuanio Pontificio under the heading "I Sommi Pontefici Romani" (The Supreme Pontiffs of Rome), excluding those that are explicitly indicated as antipopes. Published every year by the Roman Curia, the Annuario Pontificio attaches no consecutive numbers to the popes, stating that it is impossible to decide which side represented at various times the legitimate succession, in particular regarding Pope Leo VIII, Pope Benediot V and some mid-11th-century popes. ${ }^{[1]}$
The 2001 edition of the Annuario Pontificio introduced 'almost 200 corrections to its existing biographies of the popes, from St Peter to John Paul II". The corrections concemed dates, especially in the first two centuries, birthplaces and the family name of one pope ${ }^{[2]}$
The term pope (Latin: papa "father") is used in several Churches to denote their high spiritual leaders (for example Coptic Pope). This title in English usage usually refers to the head of the Roman Catholic Church. The Roman Catholic pope uses various titles by tradition, including Papa, Summus Pontifex, Pontifex Maximus, and Servus servorum Dei. Each title has been added by unique historical events and unlike oher papal prerogatives, is not incapable of modification. ${ }^{[3]}$

Hermannus Contractus may have been the first historian to number the popes continuously. His list ends in 1049 with Pope Leo IX as number 154. Several changes were made to the list during the 20th century. Antipope Christopher was considered legitimate for a long time. Pope-elect Stephen was considered legitimate under the name Stephen II until the 1961 edition, when his name was erased. Although these changes are no longer controversial, a number of modern lists still include this "ffirst Pope Stephen II". It is probable that this is because they are based on the 1913 edition of the Catholic Encyclopedia, which is in the public domain.
A significant number of these popes have been recognized as saints, including 48 out of the first 50 consecutive Popes.

Pleque commamorating the popos buried 5) in St Poterb (ther names in Latin and the yoar of thair buria)

What if we tried to represent the meaning of documents? For instance, we could take this webpage and record this information
beginning.papacy $=37$
popes $=c(' S t . ~ P e t e r ', ' S t . ~ L i n u s ', . .$. name.origin $=$ 'latin for fathers' ๑ac

A PROBLEM

This approach is essentially unworkable
While good in terms of the second criteria (highlighting important features), it is terrible in terms of the first (easily generated and used)

This speaks to needing a different representation

BAG-OF-WORDS REPRESENTATION

It turns out a very simple minded approach is probably the best developed so far. Take all the words in the document(s) and count how many times they appear and stick this in a long vector (or matrix, if multiple documents).

For example:
pope $=154$, catholic $=17$, vatican $=12$, jesus $=2$, the $=304, .$.

This is very easy to generate (once we tweak the scripting to ignore certain things).

But is it too much of a reduction?

BAG-OF-WORDS REPRESENTATION

Idea: By itself "pope" can mean different things

But, we can learn from the other words in the document

- Words like 'football', 'NFL', 'lineman', and 'arizona’ suggest the wrong type of pope
- Words like 'pontiff', 'vatican', 'catholic', and 'italy' suggest the right type of pope
- Words like 'cardinal' are not informative

Counting words

Recall problem: given a query and a set of documents, find the K documents most similar to the query

Countings words:

1. Make a list of all the words present in the documents and the query
2. Index the words $w=1, \ldots, W$
(for example, in alphabetical order)
3. Index the documents $d=1, \ldots, D$
(just pick some order)
4. For each document d, count how many times each word w is used (can be, and most likely is, zero), and call this count $X_{d w}$. The vector $X_{d}=\left(X_{d 1}, \ldots, X_{d W}\right)^{\top}$ gives the word counts for the $d^{\text {th }}$ document
5. Lastly, do the same thing for the query $Y=\left(Y_{1}, \ldots, Y_{W}\right)^{\top}$ and Y_{w} is the count for word w in the query

Simple example

Documents:

$d=1$: "This statistics class is classy'
$d=2$: "statistics say this statistics class has no class'
Query:
"classy statistics class"

	this	statistics	class	classy	is	has	no	say
X_{1}	1	1	1	1	1	0	0	0
X_{2}	1	2	2	0	0	1	1	1
Y	0	1	1	1	0	0	0	0

This is known as a document-term matrix

Distances and similarity measures

We represented each document X_{d} and query Y in a convenient vector format. Now, how do we measure similarity?

Measures of distance between W-dimensional vectors X and Y :

- The ℓ_{2} or Euclidean distance is

$$
\|X-Y\|_{2}=\sqrt{\sum_{w=1}^{W}\left(X_{w}-Y_{w}\right)^{2}}
$$

- The ℓ_{1} or Manhattan distance is

$$
\|X-Y\|_{2}=\sum_{w=1}^{W}\left|X_{w}-Y_{w}\right|
$$

There are many others
Basic idea: Find the K vectors X that are 'closest',

Bigger example

Documents: Suppose we have 8 Wikipedia articles, 4 about the TMNT (Leonardo, Raphael, Michelangelo, and Donatello) and about the 4 renaissance artists of the same name

Query: "Raphael is cool but rude, Michelangelo is a party dude!"

Potential Problems

What are the potential problems with performing this query?

Potential Problems

What are the potential problems with performing this query?

- Unequal document sizes (example: TMNT Michelangel is 3330 words vs 6524 words for the artist). Also, the query is only 7 words long.
- Stemming
- Punctuation
- Common words ('raphael' occurs 70 times in TMNT article and 144 in the artist's article) provide little discrimination

Distances

If we don't account for any of these problems, we get the following subset of the document-term matrix along with the distance to the query

but cool	dude party michelangelo	raphael	rude	dist				
doc 1	19	0	0	0	4	24	0	309.5
doc 2	8	1	0	0	7	45	1	185.2
doc 3	7	0	4	3	77	23	0	331.0
doc 4	2	0	0	0	4	11	0	220.2
doc 5	17	0	0	0	9	6	0	928.5
doc 6	36	0	0	0	17	101	0	646.5
doc 7	10	0	0	0	159	2	0	527.3
doc 8	2	0	0	0	0	0	0	196.1
query	1	1	1	1	1	1	1	0.0

1. Raphael the Turtle
2. Donatello the Artist
3. Michelangelo the Turtle

Distances

If we don't account for any of these problems, we get the following subset of the document-term matrix along with the distance to the query

but cool	dude party michelangelo	raphael	rude	dist				
doc 1	19	0	0	0	4	24	0	309.5
doc 2	8	1	0	0	7	45	1	185.2
doc 3	7	0	4	3	77	23	0	331.0
doc 4	2	0	0	0	4	11	0	220.2
doc 5	17	0	0	0	9	6	0	928.5
doc 6	36	0	0	0	17	101	0	646.5
doc 7	10	0	0	0	159	2	0	527.3
doc 8	2	0	0	0	0	0	0	196.1
query	1	1	1	1	1	1	1	0.0

1. Raphael the Turtle
2. Donatello the Artist
3. Michelangelo the Turtle

VARYING DOCUMENT LENGTHS AND NORMALIZATION

Different documents have different lengths. Total word counts:

```
doc }1\mathrm{ doc 2 doc 3 doc 4 doc 5 doc 6 doc 7 doc 8 query
```


Note that the documents have quite different lengths
We should normalize them in some way

- Document length: Divide X by its sum

$$
X \leftarrow X / \sum_{w=1}^{W} X_{w}
$$

- ℓ_{2} Length: Divide X by its Euclidean length

$$
X \leftarrow X /\|X\|_{2}
$$

Back to our example

```
    dist/doclen dist/l2len
doc 1 0.3852650 1.373041
doc 2 0.3777634 1.321871
doc 3 0.3781194 1.319048
doc 4 0.3887862 1.393433
doc 5 0.3906030 1.404972
doc 6 0.3820197 1.349070
doc 7 0.3812202 1.324758
doc 8 0.3935327 1.411486
query 0.0000000 0.000000
```


Great!

So far, we've dealt with the varying document lengths. What about some words being more helpful than others?

Common words, especially, are not going to help find relevant documents

How do we deal with common words?

Intuition: Words that do not appear very often should help us discriminate better, as they are by implication very specific to that document

To deal with common words we could just keep track of a list of words like 'the', 'this', 'that', etc. and exclude them from our representation.

This is both too crude and time consuming

Common words and IDF weighting

Inverse document frequency (IDF) weighting is smarter and more efficient

- For each word, w, let n_{w} be the number of documents that contain this word
- The, for each vector X_{d} and Y, multiply the $w^{\text {th }}$ component by

$$
\operatorname{IDF}(w)=\log \left(D / n_{w}\right)
$$

Note that if a word appears in every document, then it gets a weight of zero.

If $n_{w}<D$, then $\log \left(D / n_{w}\right)>0$. In particular, if $D \gg n_{w}$, then D / n_{w} is also large (example: $D=100, n_{w}=1, \operatorname{IDF}(w) \approx 4.6$)

Putting it all together

Think of the document-term matrix

	word 1	word 2	\ldots	word W
doc 1				
doc 2				
\vdots				
doc D				

- Normalization scales each row by something (divides a row vector X by its sum or ℓ_{2} norm)
- IDF weighting scales each column by something (multiplies the $w^{\text {th }}$ column by $\left.\operatorname{IDF}(w)\right)$
- We can use both, just normalize first and then perform IDF

Back to our example

	dist/doclen/IDF
doc 1 (tmnt leo)	0.623
doc 2 (tmnt rap)	0.622
doc 3 (tmnt mic)	0.620
doc 4 (tmnt don)	0.623
doc 5 (real leo)	0.622
doc 6 (real rap)	0.622
doc 7 (real mic)	0.622
doc 8 (real don)	0.624
query (tmnt leo)	0.000

What happened?

[1]	"---"	"----"	"---x"	"--dead"	"--x"
[7] "-part"	"-year-old"	"abandoned"	"abbeville"	"abbey"	"abilities"
[13] "ability"	"able"	"abode"	"about"	"above"	"abrams"
[19] "abroad"	"abruptly"	"absence"	"absent"	"absolute"	"absorbed"
[25] "absorbing"	"abstemious" "absurd"	"abundance"	"abundantly" "abuse"		
[31] "academic"	"academies"	"academy"	"accademia"	"accent"	"accept"
[37] "acceptance" "accepted"	"accepting"	"accident"	"acclaimed"	"acclimate"	
[43] "accompany"	"accomplish" "accordance" "according"	"account"	"accounts"		

Stemming

Having words 'connect', 'connects', 'connected', 'connecting', 'connection', etc. in our representation is extraneous. Stemming reduces all of these to a single stem word 'connect'

Can a simple list of rules provide perfect stemming? No: 'relate' vs. 'relativity' or 'sand' and 'sander' or 'wand' and 'wander' or 'man' and 'many' or...

Stemming also depends on the language. It is easier in English than in:

- German (fusional or agglomerative language) e.g.

Hubschrauberlandeplatz = helicopter landing pad

- Turkisk (agglutinative language) e.g.

Turklestiremedigimizlerdensinizdir = maybe you are one of those whom we were not able to Turkify

Stemming

Before

$[1]$	$"---"$	"----"	"---x"	"--dead"	"--x"
[7] "-part"	"-year-old"	"abandoned"	"abbeville"	"abbey"	"abilities"
[13] "ability"	"able"	"abode"	"about"	"above"	"abrams"
[19] "abroad"	"abruptly"	"absence"	"absent"	"absolute"	"absorbed"
[25] "absorbing"	"abstemious" "absurd"	"abundance"	"abundantly" "abuse"		
[31] "academic"	"academies"	"academy"	"accademia"	"accent"	"accept"
[37] "acceptance" "accepted"	"accepting"	"accident"	"acclaimed"	"acclimate"	
[43] "accompany"	"accomplish" "accordance" "according"	"account"	"accounts"		

After

[1]	"---"	"----"	"---x"	"--dead"	"--x"
[7] "-part"	"-year-old"	"abandon"	"abbevill"	"abbey"	"abil"
[13] "abl"	"abod"	"abov"	"abram"	"abroad"	"abrupt"
[19] "absenc"	"absent"	"absolut"	"absorb"	"abstemi"	"absurd"
[25] "abund"	"abus"	"academ"	"academi"	"accademia"	"accent"
[31] "accept"	"accid"	"acclaim"	"acclim"	"accommod"	"accompani"
[37] "accomplish" "accord"	"account"	"accumul"	"accur"	"accus"	
[43] "achiev"	"ackerman"	"acknowledg" "acolyt"	"acquir"	"act"	

Back to our example, after stemming

Query: "Raphael is cool but rude, Michelangelo is a party dude!"

	dist/doclen/IDF
doc 1 (tmnt leo)	0.965
doc 2 (tmnt rap)	0.870
doc 3 (tmnt mic)	0.867
doc 4 (tmnt don)	0.971
doc 5 (real leo)	0.927
doc 6 (real rap)	0.971
doc 7 (real mic)	0.954
doc 8 (real don)	0.930
query	0.000

Text processing in R

Text processing in R

The basic commands are:

```
library(tm)
corp = VCorpus(VectorSource(docs))
dtm = DocumentTermMatrix(corp,
    control=list(tolower=TRUE,
    removePunctuation=TRUE,
    removeNumbers=TRUE))
```


For example:

```
exampleDoc = c('I really want a real pony not a wanted poster')
exampleCorp = VCorpus(VectorSource(exampleDoc))
dtm = DocumentTermMatrix(exampleCorp,
    control=list(tolower=TRUE,
    removePunctuation=TRUE,
    removeNumbers=TRUE))
```

> colnames (dtm)
[1] "not" "pony" "poster" "real" "really" "want" "wanted"

Text processing in R

```
exampleDoc1 = c('I really want a real pony not a wanted poster')
exampleDoc2 = c('Real men do not ride ponies, they ride rockets'
exampleDoc3 = c('I had a pony named rocket, man')
exampleDocs = c(exampleDoc1,exampleDoc2,exampleDoc3)
exampleCorp = VCorpus(VectorSource(exampleDocs))
dtm = DocumentTermMatrix(exampleCorp,
control=list(tolower=TRUE,
removePunctuation=TRUE,
removeNumbers=TRUE))
> colnames(dtm)
```


Why sparsity?

Reminder: Sparse matrix structures can be really helpful
In text processing, sparsity is everything
I have a dataset with approximately 30,000 words and 52,000 documents. If I stored this naively, this would take

$$
\text { storage }=\frac{64 \mathrm{bits} * 30,000 * 52,000}{8 \text { bytes } * 2^{10} \mathrm{~kb} * 2^{10} \mathrm{mb} * 2^{10} \text { gigabytes }}=11.622 \mathrm{gb}
$$

Text processing in R

We can look directly at the document-term matrix

```
> inspect(dtm)
```

[omitted]
had man men named not ponies pony poster real really ride rocket

0	0	0	0	1	0	1	1	1	1	0	0
0	0	1	0	1	1	0	0	1	0	2	0
1	1	0	1	0	0	1	0	0	0	0	1

rockets			they want
0	0	1	wanted
1	1	0	1
0	0	0	0

Text processing in R

```
Reminder, here is our index \((W=16)\)
> colnames(dtm)
[1] "had" "man" "men" "named" "not" "ponies"
"pony" "poster" "real" "really" "ride" "rocket"
"rockets" "they" "want" "wanted"
```

There are two issues here: common words and stemming. We can with both relatively easily in R

DEALING WITH COMMON WORDS AND STEMMING

> dtm.stem $=$ DocumentTermMatrix(exampleCorp,

```
control=list(tolower=TRUE,
    removePunctuation=list(preserve_intra_word_dashes=T),
    removeNumbers=TRUE,
    stemming=TRUE,
    stopwords = TRUE,
    weighting=weightTfIdf,
    wordLengths = c(3,10))
```

- removePunctuation: Here, I have it keep between word dashes to maintain hyphenation
- stemming: Should I perform stemming?
- stopwords: These are common transition words that are called stop words. These are words like 'the', 'at', 'a' ...
- weighting: What weighting scheme should I do?
- wordLengths: What length of words should I accept?

Text processing in R: New dictionaries

Reminder, here is our index $(W=16)$
> colnames (dtm)
"had" "man" "men" "named" "not" "ponies"
"pony" "poster" "real" "really" "ride" "rocket" "rockets"
"they" "want" "wanted"
> colnames (dtm.stem)
"name" "poni" "poster" "real"
"realli" "ride" "rocket"
What happens if I don't remove stop words? (set stopwords = FALSE)
> colnames (dtm.nostop)

```
[1] "do" "had" "man" "men" "name" "not" "poni"
"poster" "real" "realli" "ride" "rocket" "they" "want"
```


Text processing in R: Inputs to Distances

```
> inspect(dtm.stem)
A document-term matrix (3 documents, 7 terms)
```

Non-/sparse entries: 8/13
Sparsity : 62\%
Maximal term length: 6
Weighting : term frequency - inverse document frequency
(normalized) (tf-idf)

	Terms name	poni	poster	real	realli	ride	rocket
1	0.0000000	0.0	0.3962406	0.1462406	0.3962406	0.000000	0.000
2	0.0000000	0.0	0.0000000	0.1169925	0.0000000	0.633985	0.116
3	0.5283208	0.0	0.0000000	0.0000000	0.0000000	0.000000	0.194
\# So, Doc 1 and Doc 2 are							
> mydtm = as.matrix(dtm.stem)							
	sqrt (sum (dtm [1]-mydtm	,]) 2))			

[1] 0.8546888

Text processing in R: Hazards of open-source SOFTWARE

You may need to do the following at the beginning of your code:
Sys.setenv (NOAWT=TRUE)
library (RWeka)
library(rJava)

Note: install these packages first

