
Text Processing: Overview
-Applied Multivariate Analysis-

Lecturer: Darren Homrighausen, PhD

1

Who was the first pope?

Suppose we are having a bar-room debate with our friends about
the origins of the papacy

How we would settle this debate has changed radically in the last
20 years.

2

What we used to do

1. Go to library 4. Search

2. Card catalog 5. No book

3. Get metadata 6. Wait

This was slow and expensive..

3

What we do now

4

Information retrieval and representations

How does Google do this?

Information retrieval: given a set of documents (such as
webpages, emails, news articles,..), our problem is to retrieve the K
most similar documents to a given query (e.g. “who was the first
pope?”).

The first step is to think of a way of representing these documents.

We want the representation to:

• be both easy to generate from the documents and easy to
work with

• highlight important aspects of the documents and suppress
unimportant ones

Like always, there is a trade-off between these two ideas

5

An intuitive first idea

What if we tried to represent the
meaning of documents? For instance,
we could take this webpage and record
this information

beginning.papacy = 37

popes = c(’St. Peter’,’St. Linus’,...)

name.origin = ’latin for father’
6

A problem

This approach is essentially unworkable

While good in terms of the second criteria (highlighting important
features), it is terrible in terms of the first (easily generated and
used)

This speaks to needing a different representation

7

Bag-of-words representation

It turns out a very simple minded approach is probably the best
developed so far. Take all the words in the document(s) and count
how many times they appear and stick this in a long vector (or
matrix, if multiple documents).

For example:

pope = 154, catholic = 17, vatican = 12, jesus = 2, the = 304,...

This is very easy to generate (once we tweak the scripting to
ignore certain things).

But is it too much of a reduction?

8

Bag-of-words representation

Idea: By itself “pope” can mean
different things

But, we can learn from the other
words in the document

• Words like ‘football’, ‘NFL’,
‘lineman’, and ‘arizona’ suggest
the wrong type of pope

• Words like ‘pontiff’, ‘vatican’,
‘catholic’, and ‘italy’ suggest
the right type of pope

• Words like ‘cardinal’ are not
informative

9

Counting words
Recall problem: given a query and a set of documents, find the K
documents most similar to the query

Countings words:

1. Make a list of all the words present in the documents and the
query

2. Index the words w = 1, . . . ,W
(for example, in alphabetical order)

3. Index the documents d = 1, . . . ,D
(just pick some order)

4. For each document d , count how many times each word w is
used (can be, and most likely is, zero), and call this count
Xdw . The vector Xd = (Xd1, . . . ,XdW)> gives the word
counts for the d th document

5. Lastly, do the same thing for the query Y = (Y1, . . . ,YW)>

and Yw is the count for word w in the query

10

Simple example

Documents:

d = 1: “This statistics class is classy’
d = 2: “statistics say this statistics class has no class’

Query:

“classy statistics class”

this statistics class classy is has no say

X1 1 1 1 1 1 0 0 0

X2 1 2 2 0 0 1 1 1

Y 0 1 1 1 0 0 0 0

This is known as a document-term matrix

11

Distances and similarity measures
We represented each document Xd and query Y in a convenient
vector format. Now, how do we measure similarity?

Measures of distance between W -dimensional vectors X and Y :

• The `2 or Euclidean distance is

||X − Y ||2 =

√√√√ W∑
w=1

(Xw − Yw)2

• The `1 or Manhattan distance is

||X − Y ||2 =
W∑

w=1

|Xw − Yw |

There are many others

Basic idea: Find the K vectors X that are ‘closest’
12

Bigger example

Documents: Suppose we have 8 Wikipedia articles, 4 about the
TMNT (Leonardo, Raphael, Michelangelo, and Donatello) and
about the 4 renaissance artists of the same name

1 2 3 4 5 6 7 8

Query: “Raphael is cool but rude, Michelangelo is a party dude!”

13

Potential problems

What are the potential problems with performing this query?

• Unequal document sizes (example: TMNT Michelangel is
3330 words vs 6524 words for the artist). Also, the query is
only 7 words long.

• Stemming

• Punctuation

• Common words (‘raphael’ occurs 70 times in TMNT article
and 144 in the artist’s article) provide little discrimination

14

Potential problems

What are the potential problems with performing this query?

• Unequal document sizes (example: TMNT Michelangel is
3330 words vs 6524 words for the artist). Also, the query is
only 7 words long.

• Stemming

• Punctuation

• Common words (‘raphael’ occurs 70 times in TMNT article
and 144 in the artist’s article) provide little discrimination

14

Distances

If we don’t account for any of these problems, we get the following
subset of the document-term matrix along with the distance to the
query

but cool dude party michelangelo raphael rude dist

doc 1 19 0 0 0 4 24 0 309.5

doc 2 8 1 0 0 7 45 1 185.2

doc 3 7 0 4 3 77 23 0 331.0

doc 4 2 0 0 0 4 11 0 220.2

doc 5 17 0 0 0 9 6 0 928.5

doc 6 36 0 0 0 17 101 0 646.5

doc 7 10 0 0 0 159 2 0 527.3

doc 8 2 0 0 0 0 0 0 196.1

query 1 1 1 1 1 1 1 0.0

1. Raphael the Turtle

2. Donatello the Artist

3. Michelangelo the Turtle

15

Distances

If we don’t account for any of these problems, we get the following
subset of the document-term matrix along with the distance to the
query

but cool dude party michelangelo raphael rude dist

doc 1 19 0 0 0 4 24 0 309.5

doc 2 8 1 0 0 7 45 1 185.2

doc 3 7 0 4 3 77 23 0 331.0

doc 4 2 0 0 0 4 11 0 220.2

doc 5 17 0 0 0 9 6 0 928.5

doc 6 36 0 0 0 17 101 0 646.5

doc 7 10 0 0 0 159 2 0 527.3

doc 8 2 0 0 0 0 0 0 196.1

query 1 1 1 1 1 1 1 0.0

1. Raphael the Turtle

2. Donatello the Artist

3. Michelangelo the Turtle

15

Varying document lengths and normalization
Different documents have different lengths. Total word counts:

doc 1 doc 2 doc 3 doc 4 doc 5 doc 6 doc 7 doc 8 query

3114 1976 3330 2143 8962 6524 4618 1766 7

Note that the documents have quite different lengths

We should normalize them in some way

• Document length: Divide X by its sum

X ← X/

W∑
w=1

Xw

• `2 length: Divide X by its Euclidean length

X ← X/||X ||2

16

Back to our example

dist/doclen dist/l2len

doc 1 0.3852650 1.373041

doc 2 0.3777634 1.321871

doc 3 0.3781194 1.319048

doc 4 0.3887862 1.393433

doc 5 0.3906030 1.404972

doc 6 0.3820197 1.349070

doc 7 0.3812202 1.324758

doc 8 0.3935327 1.411486

query 0.0000000 0.000000

Great!

So far, we’ve dealt with the varying document lengths. What
about some words being more helpful than others?

Common words, especially, are not going to help find relevant
documents

17

How do we deal with common words?

Intuition: Words that do not appear very often should help us
discriminate better, as they are by implication very specific to that
document

To deal with common words we could just keep track of a list of
words like ‘the’, ‘this’, ‘that’, etc. and exclude them from our
representation.

This is both too crude and time consuming

18

Common words and IDF weighting

Inverse document frequency (IDF) weighting is smarter and more
efficient

• For each word, w , let nw be the number of documents that
contain this word

• The, for each vector Xd and Y , multiply the w th component
by

IDF (w) = log(D/nw)

Note that if a word appears in every document, then it gets a
weight of zero.

If nw < D, then log(D/nw) > 0. In particular, if D >> nw , then
D/nw is also large (example: D = 100, nw = 1, IDF (w) ≈ 4.6)

19

Putting it all together

Think of the document-term matrix

word 1 word 2 . . . word W

doc 1

doc 2
...

doc D

• Normalization scales each row by something (divides a row
vector X by its sum or `2 norm)

• IDF weighting scales each column by something (multiplies
the w th column by IDF (w))

• We can use both, just normalize first and then perform IDF

20

Back to our example

dist/doclen/IDF

doc 1 (tmnt leo) 0.623

doc 2 (tmnt rap) 0.622

doc 3 (tmnt mic) 0.620

doc 4 (tmnt don) 0.623

doc 5 (real leo) 0.622

doc 6 (real rap) 0.622

doc 7 (real mic) 0.622

doc 8 (real don) 0.624

query (tmnt leo) 0.000

What happened?

[1] "---" "----" "---x" "--dead" "--x" "-foot"

[7] "-part" "-year-old" "abandoned" "abbeville" "abbey" "abilities"

[13] "ability" "able" "abode" "about" "above" "abrams"

[19] "abroad" "abruptly" "absence" "absent" "absolute" "absorbed"

[25] "absorbing" "abstemious" "absurd" "abundance" "abundantly" "abuse"

[31] "academic" "academies" "academy" "accademia" "accent" "accept"

[37] "acceptance" "accepted" "accepting" "accident" "acclaimed" "acclimate"

[43] "accompany" "accomplish" "accordance" "according" "account" "accounts"

21

Stemming

Having words ‘connect’, ‘connects’, ‘connected’, ‘connecting’,
‘connection’, etc. in our representation is extraneous. Stemming
reduces all of these to a single stem word ‘connect’

Can a simple list of rules provide perfect stemming? No: ‘relate’
vs. ‘relativity’ or ‘sand’ and ‘sander’ or ‘wand’ and ‘wander’ or
‘man’ and ‘many’ or...

Stemming also depends on the language. It is easier in English
than in:

• German (fusional or agglomerative language) e.g.
Hubschrauberlandeplatz = helicopter landing pad

• Turkisk (agglutinative language) e.g.
Turklestiremedigimizlerdensinizdir = maybe you are one of those whom we were

not able to Turkify

22

Stemming

Before

[1] "---" "----" "---x" "--dead" "--x" "-foot"

[7] "-part" "-year-old" "abandoned" "abbeville" "abbey" "abilities"

[13] "ability" "able" "abode" "about" "above" "abrams"

[19] "abroad" "abruptly" "absence" "absent" "absolute" "absorbed"

[25] "absorbing" "abstemious" "absurd" "abundance" "abundantly" "abuse"

[31] "academic" "academies" "academy" "accademia" "accent" "accept"

[37] "acceptance" "accepted" "accepting" "accident" "acclaimed" "acclimate"

[43] "accompany" "accomplish" "accordance" "according" "account" "accounts"

After

[1] "---" "----" "---x" "--dead" "--x" "-foot"

[7] "-part" "-year-old" "abandon" "abbevill" "abbey" "abil"

[13] "abl" "abod" "abov" "abram" "abroad" "abrupt"

[19] "absenc" "absent" "absolut" "absorb" "abstemi" "absurd"

[25] "abund" "abus" "academ" "academi" "accademia" "accent"

[31] "accept" "accid" "acclaim" "acclim" "accommod" "accompani"

[37] "accomplish" "accord" "account" "accumul" "accur" "accus"

[43] "achiev" "ackerman" "acknowledg" "acolyt" "acquir" "act"

23

Back to our example, after stemming

1 2 3 4 5 6 7 8

Query: “Raphael is cool but rude, Michelangelo is a party dude!”

dist/doclen/IDF

doc 1 (tmnt leo) 0.965

doc 2 (tmnt rap) 0.870

doc 3 (tmnt mic) 0.867

doc 4 (tmnt don) 0.971

doc 5 (real leo) 0.927

doc 6 (real rap) 0.971

doc 7 (real mic) 0.954

doc 8 (real don) 0.930

query 0.000

24

Text processing in R

25

Text processing in R
The basic commands are:

library(tm)

corp = VCorpus(VectorSource(docs))

dtm = DocumentTermMatrix(corp,

control=list(tolower=TRUE,

removePunctuation=TRUE,

removeNumbers=TRUE))

For example:

exampleDoc = c(’I really want a real pony not a wanted poster’)

exampleCorp = VCorpus(VectorSource(exampleDoc))

dtm = DocumentTermMatrix(exampleCorp,

control=list(tolower=TRUE,

removePunctuation=TRUE,

removeNumbers=TRUE))

> colnames(dtm)

[1] "not" "pony" "poster" "real" "really" "want" "wanted"

26

Text processing in R

exampleDoc1 = c(’I really want a real pony not a wanted poster’)

exampleDoc2 = c(’Real men do not ride ponies, they ride rockets’)

exampleDoc3 = c(’I had a pony named rocket, man’)

exampleDocs = c(exampleDoc1,exampleDoc2,exampleDoc3)

exampleCorp = VCorpus(VectorSource(exampleDocs))

dtm = DocumentTermMatrix(exampleCorp,

control=list(tolower=TRUE,

removePunctuation=TRUE,

removeNumbers=TRUE))

> colnames(dtm)

[1] "had" "man" "men" "named" "not" "ponies"

"pony" "poster" "real" "really" "ride" "rocket"

"rockets" "they" "want" "wanted"

> dtm

A document-term matrix (3 documents, 16 terms)

Non-/sparse entries: 19/29

Sparsity : 60%

Maximal term length: 7

Weighting : term frequency (tf) 27

Why sparsity?

Reminder: Sparse matrix structures can be really helpful

In text processing, sparsity is everything

I have a dataset with approximately 30,000 words and 52,000
documents. If I stored this naively, this would take

storage =
64bits ∗ 30, 000 ∗ 52, 000

8bytes ∗ 210kb ∗ 210mb ∗ 210gigabytes
= 11.622gb

28

Text processing in R

We can look directly at the document-term matrix

> inspect(dtm)

[omitted]

had man men named not ponies pony poster real really ride rocket

0 0 0 0 1 0 1 1 1 1 0 0

0 0 1 0 1 1 0 0 1 0 2 0

1 1 0 1 0 0 1 0 0 0 0 1

rockets they want wanted

0 0 1 1

1 1 0 0

0 0 0 0

29

Text processing in R

Reminder, here is our index (W = 16)

> colnames(dtm)

[1] "had" "man" "men" "named" "not" "ponies"

"pony" "poster" "real" "really" "ride" "rocket"

"rockets" "they" "want" "wanted"

There are two issues here: common words and stemming. We can
with both relatively easily in R

30

Dealing with common words and stemming

> dtm.stem = DocumentTermMatrix(exampleCorp,

control=list(tolower=TRUE,

removePunctuation=list(preserve_intra_word_dashes=T),

removeNumbers=TRUE,

stemming=TRUE,

stopwords = TRUE,

weighting=weightTfIdf,

wordLengths = c(3,10))

• removePunctuation: Here, I have it keep between word
dashes to maintain hyphenation

• stemming: Should I perform stemming?

• stopwords: These are common transition words that are
called stop words. These are words like ‘the’, ‘at’, ‘a’ ...

• weighting: What weighting scheme should I do?

• wordLengths: What length of words should I accept?

31

Text processing in R: New dictionaries

Reminder, here is our index (W = 16)

> colnames(dtm)

"had" "man" "men" "named" "not" "ponies"

"pony" "poster" "real" "really" "ride" "rocket" "rockets"

"they" "want" "wanted"

> colnames(dtm.stem)

"name" "poni" "poster" "real"

"realli" "ride" "rocket"

What happens if I don’t remove stop words?
(set stopwords = FALSE)

> colnames(dtm.nostop)

[1] "do" "had" "man" "men" "name" "not" "poni"

"poster" "real" "realli" "ride" "rocket" "they" "want"

32

Text processing in R: Inputs to Distances

> inspect(dtm.stem)

A document-term matrix (3 documents, 7 terms)

Non-/sparse entries: 8/13

Sparsity : 62%

Maximal term length: 6

Weighting : term frequency - inverse document frequency

(normalized) (tf-idf)

Terms

name poni poster real realli ride rocket

1 0.0000000 0.0 0.3962406 0.1462406 0.3962406 0.000000 0.000

2 0.0000000 0.0 0.0000000 0.1169925 0.0000000 0.633985 0.116

3 0.5283208 0.0 0.0000000 0.0000000 0.0000000 0.000000 0.194

So, Doc 1 and Doc 2 are

> mydtm = as.matrix(dtm.stem)

> sqrt(sum((mydtm[1,]-mydtm[2,])^2))

[1] 0.8546888

distance apart
33

Text processing in R: Hazards of open-source
software

You may need to do the following at the beginning of your code:

Sys.setenv(NOAWT=TRUE)

library(RWeka)

library(rJava)

Note: install these packages first

34

