
STAT675 – Homework 1
Due: Sept. 17

1. a. Show that the prediction (also known as generalization) squared-error risk can be written
as

R(f) = EX,Y (f(X)− Y )2 = EX(f(X)− E[Y |X])2 + EX [V[Y |X]]. (1)

b. What does this imply about the Bayes rule for squared error loss?



2. Reminder from lecture: assume that we get a new draw of the training data, D0, such that
D ∼ D0 and

D = ((X1, Y1), . . . , (Xn, Yn)) and D0 = ((X1, Y
0
1 ), . . . , (Xn, Y

0
n ))

If we make a small compromise to risk, we can form a sensible suite of risk estimators

To wit, letting Y 0 = (Y 0
1 , . . . , Y

0
n )>, define

Rin = EY 0|DP̂D0`f̂ =
1

n

n∑
i=1

EY 0|D`(f̂(Xi), Y
0
i ).

Then the average optimism is

opt = EY [Rin − R̂train] =
2

n

n∑
i=1

Cov(f̂(Xi), Yi).

Therefore, we get the following estimate of risk

EYRin = EY R̂train +
2

n

n∑
i=1

Cov(f̂(Xi), Yi),

which has unbiased estimator (i.e. EYRgic = EYRin)

Rgic = R̂train +
2

n

n∑
i=1

Cov(f̂(Xi), Yi).

Our task now is to either estimate or compute opt to produce ôpt and form

R̂gic = R̂train + ôpt. (2)

a. Stein’s lemma:

i. Let Z ∼ N(0, 1) and let f : R → R be absolutely continuous with derivative f ′.
Then1

E[Zf(Z)] = E[f ′(Z)]

Show this is true. See [6] for more details.

ii. Extend this result to cover an arbitrary normal random variable X ∼ N(µ, σ2).

iii. Suppose2 Y ∼ (µ, σ2I) ∈ Rn and let f : Rn → Rn. Show that the expected training
error can be decomposed as

E||µ− f(y)||22 = −nσ2 + E||y − f(y)||22 + 2
n∑
i=1

Cov(Yi, fi(Y )).

1Note: we may not return to this, but it turns out this is an if and only if statement
2This notation means Y has mean µ and variance σ2I.



iv. It is possible to show that for each i = 1, . . . , n, as long as fi is almost differentiable,
then if X ∼ N(µ, σ2I),

1

σ2
E[(X − µ)fi(X)] = E[∇fi(X)],

where ∇fi(X) is the gradient of the ith component of f evaluated at X. Use this
fact (which is a multivariate extension of i.) to get an unbiased estimator of the risk.
This is known as Stein’s Unbiased Risk Estimator (SURE). It is a generalization of

Mallow’s Cp. Note that
∑n

i=1
∂fi
∂xi

(x) is known as the divergence of f .

b. Stein’s paradox. We will use Stein’s lemma to show that the usual maximum likelihood
estimator X for estimating µ in X ∼ N(µ, σ2I) ∈ Rn is inadmissible3 when n ≥ 3. It
turns out that

µ̂ =

(
1− (d− 2)σ2

||X||22

)
X

uniformly dominatesX. See [5] for the original paper and [1] for a nontechnical discussion
of this point.

i. What is the risk of X as an estimator of µ?

ii. Use your result from the previous question to compute the SURE of µ̂. Note: this
will reduce to computing the training error and then the divergence of the estimator.

iii. Take the expectation of the SURE for µ̂ and show that its risk is always lower than
that of X. Jensen’s inequality will come in handy. Also, a result4 about χ2 random
variables: suppose that W is a non-central χ2

ν,δ random variable with non-centrality

parameter δ and ν degrees of freedom. Then W ∼ χ2
ν+2K,0, where K ∼ Pois(δ/2).

c. Degrees of freedom. Inline with the definitions above, let Y1, . . . , Yn be such that
VYi = σ2 and Cov(Yi, Yi′) = σ2δi,i′ (the Kronecker delta function). Let g : Rn → Rn be

a function that gives be fitted values, ie: g(Y1, . . . , Yn) = Ŷ ∈ Rn. Then

df(g) =
1

σ2

n∑
i=1

Cov(Yi, gi(Y )) =
1

σ2
trace(Cov(Y, g(Y ))).

Therefore, we can use our results from the previous sections to calculate degrees of
freedom for various fitting procedures. Let’s do that for

i. Ridge regression

ii. For lasso, I don’t want you to derive the degrees of freedom. Instead, look over [7]
and see if you can following the general flow of the argument, at least up to the end
of section 2.1. Give an overview of the argument here.

d. Generalized information criterion (GIC). The original proposed GIC was in [3]

and had the following form. Assume Yi = X>i β∗ + εi, where εi
i.i.d∼ N(0, σ2). The main

goal was model selection, so let α ∈ A = {candidate models}, where this could be all
2p − 1 models from p covariates for instance. Then

GIC0(α) = log(σ̂2α) +
1

n
κndα,

where σ̂2α is the MLE under model α, (κn) is a sequence of numbers, and dα is the degrees
of freedom from model α. Choosing κn = 2 produces AIC, κ = log(n) produces BIC.

3I’m going to leave it up to you to look up what inadmissible means
4Known as ‘Poissonization’.



i. These choices work when n >> p. However, when n ≤ p, this doesn’t work at all.
Why?

ii. Instead, we use equation (2), with ôpt = σ̂2κndα/n and σ̂2 is an estimator of the
variance (see [8]) for more information). How could you make this approach opera-
tional in practice?
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