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1 Nonparametric regression

Suppose Y ∈ R and we are trying to nonparametrically fit the regression function

EY |X = f∗(X)

A common approach (particularly when p is small) is to specify

• A fixed basis, (φk)∞k=1

• A tuning parameter K

We follow this prescription:

1. Write1

f∗(X) =

∞∑
k=1

βkφk(x)

where βk = 〈f∗, φk〉

2. Truncate this expansion2 at K

fK∗ (X) =

K∑
k=1

βkφk(x)

3. Estimate βk with least squares

The weaknesses of this approach are:

• The basis is fixed and independent of the data

• If p is large, then nonparametrics doesn’t work well at all

• If the basis doesn’t ‘agree’ with f∗, then K will have to be large to capture the structure

(f∗ =
∑∞

k=1 〈f∗, φk〉φk)

• What if parts of f∗ have substantially different structure?

An alternative would be to have the data tell us what kind of basis to use

1Technically, f∗ might not be in the span of the basis, in which case we have incurred an irreducible approximation error.
Here, I’ll just write f∗ as the projection of f∗ onto that span

2Often higher k are more rough ⇒ this is a smoothness assumption
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2 Neural networks

2.1 Definitions

L(µ(X)) = β0 +

K∑
k=1

βkσ(αk0 + α>k X)

The main components are

• The derived features Zk = σ(αk0 + α>k X) and are called the hidden units

– The function σ is called the activation function and is very often σ(u) = (1 + e−u)−1

(This particular σ(u) is known as the sigmoid function)

– The parameters β0, βk, αk0, αk are estimated from the data.

• The number of hidden units K is a tuning parameter

2.2 Observation 1: Feature map

We start with p covariates

We generate K features

Φ(X) = (1, x1, x2, . . . , xp, x
2
1, x

2
2, . . . , x

2
p, x1x2, . . . , xp−1xp) ∈ RK

= (φ1(X), . . . , φK(X))

Before feature map:

L(µ(X)) = β0 +

p∑
j=1

βjxj

After feature map:

L(µ(X)) = β>Φ(X) =

K∑
k=1

βkφk(X)

For neural networks write:

Zk = σ

αk0 +

p∑
j=1

αkjxj

 = σ
(
αk0 + α>k X

)
Then we have

Φ(X) = (1, Z1, . . . , ZK)> ∈ RK+1

and

µ(X) = β>Φ(X) = β0 +

K∑
k=1

βkσ

αk0 +

p∑
j=1

αkjxj
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2.3 Observation 2: Activation function

If σ(u) = u is linear, then we recover classical methods

L(µ(X)) = β0 +

K∑
k=1

βkσ(αk0 + α>k X)

= β0 +

K∑
k=1

βk(αk0 + α>k X)

= β0 +

K∑
k=1

βkαk0 +

K∑
k=1

βkα
>
k X

= γ0 + γ>X

= γ0 +

p∑
j=1

γ>j xj
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