
Statistical Machine Learning 21 — Neural Networks November 10, 2015

Lecturer: Prof. Homrighausen Scribe: Veronica Burt

1 Previous Lectures

We’ve been discussing

• non-convexity of estimating a neural network, making them inefficient to solve

• Methods for training neural networks

2 Hierarchical View

• See Figure 1 for a hierarchical view of an example neural network.

• The hidden layer is represented by the Z’s, which are linear combinations of the X’s. Linear combina-
tions of the Z’s are used to create the Y ’s.

• See Figure 2 for a Directed Acyclic Graph of a neural network.

• Figure 2 has 2 hidden layers. We refer to creating hidden layers as dimension expansion.

• It is a directed graph since the edges are directed; the edges consist of ordered pairs. The β̂j ’s the are
weights on the hidden layer.

• We need to estimate the weights of the edges and the parameters at each level, making this a very
difficult optimization problem.

3 Localization

• The ability to localize is both an advantage and disadvantage of neural networks. It makes a neural
network very difficult computationally, but also makes the network customizable to the data.

• The idea behind localizing is that distance gives us a metric for how similar our data points are. We
can group together close objects to make our predictions more accurate.

• For example, a Fourier series is global over time, but local over frequency.

• We can constrain a neural network by setting some of the weights equal to zero, allowing data points
that are ”far apart” to have no influence on each other.

• See Figure 3 for a picture of a constrained network compared to an unconstrained network.
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Figure 1: A single hidden layer (represented by the Z’s) neural network.

Figure 2: Directed Acyclic Graph of a neural network with 2 hidden layers.
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Figure 3: An unconstrained neural network (left) compared to a constrained network (right). Note that
in the constrained network, the edges connecting the first element of the first hidden layer to the second
element of the second hidden layer and the second element of the first hidden layer to the first element of
the second hidden layer read ”NA”.

• We can constrain a neural network in R by utilizing the neuralnet package and the exclude parameter.
Exclude is an E × 3 matrix, where E is the number of exclusions:

The first column stands for the layer

The second column stands for the input neuron

The third column stands for the output neuron

• The exclude parameters makes the desired entries of α̂ = 0 and skips them in the updates. This may
make sense given the context of our data, and also eases computation.

• For example, in our crime dataset, we may want to constrain the neural network to have neurons
specifically for demographic variables, police expenditures, and economics. This is a great feature of
neural networks.

4 Tuning Parameters

• There are 3 tuning parameters that we need to choose for neural networks: the number of hidden
units, the number of hidden layers, and the regularization parameter (or a stopping criterion λ for an
iterative solver). Note that the sum over the layers of the hidden units needs to equal the total hidden
units.

• There are two main strategies for choosing the tuning parameters:

We can set λ = 0 and use risk estimation to choose the number of hidden units and hidden layers.
This requires a 2-dimensional risk estimation grid for every combination of units and layers, which is
computationally expensive.

We can set the number of hidden layers and the total number of units to be very large, and then
choose λ via risk estimation. This method results in a 1-dimensional risk estimation grid, which is
generally preferred.

• For risk estimation, we can use a Generalized Information Criterion method or cross validation.
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• AIC = training error +2d̂f ∗ σ̂2

• The 2 present in the penalty term makes the estimate unbiased. However, it can be difficult to estimate
degrees of freedom for neural networks.

• The neuralnet package provides rather coarse estimates of AIC and BIC:

It uses the number of parameters rather than the rank of the design matrix, which overestimates
the degrees of freedom when the columns of the design matrix are linearly dependent.

It also leaves out the variance in calculations. Even if the response variable is standardized, a
variance of 1 is just an approximation.

• A better approach for estimating the degrees of freedom would be to use Taylor Series approximations
to create a linear smoother and then take the trace. Or, we can use a cross-validation approach.

5 Representational Learning

• Neural networks can be sensitive to starting values since the problem is non-convex.

• Representation Learning is the idea that the performance of machine learning methods are often highly
dependent on the choice of data representation.

• Our data is based on a coordinate system of measurements. Another scale or combination of measure-
ments is probably a better representation of the data.

• Much of machine learning is based on the idea that another representation works better, and our β̂’s are
data dependent. Rather than using the original data, transform them into features, and then calculate
β̂’s.

• Learned representations often obtain ”low level” information, such as overall shapes of the data.
”Higher level” information, such as images, are not captured.

6 Principal Component Analysis

• Principal Components Analysis is an unsupervised dimension reduction technique. It helps us find a
representation of the data that may not be obvious from the original coordinate system.

• It also solves various optimization problems that are equivalent to dimension reduction, such as maxi-
mizing variance, minimizing L2 distortions, and finding the closest subspace of a given rank.

• We find linear combinations of the original (centered) data, zij = αT
j Xi.

• These z’s are similar to the latent z’s in neural networks. The key difference is the activation function.

• Since we are trying to minimize squared error distortions, we use the Singular Value Decomposition:
X− X̄ = UDV T , where X̄ is a matrix where each column is a vector of means for that covariate. Then,
we have Z = XV = UD.

• In this decomposition, V is the coordinate system, and UD are the principal components, or the
coordinates inside the coordinate system provided by V .

• See Figure 4. Suppose we have predictors x1 and x2. We can preserve the structure of the data by
setting x1 equal to zero, which gives us the blue dots, and then setting x2 equal to zero, which gives
us the red dots. Note that the predictors are not correlated in this example.
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Figure 4: A plot of predictors x1 and x2. Note that our predictors are uncorrelated. (0, x2) is represented
by the blue dots, and (x1, 0) is represented by the red dots.

• See Figure 5. What if our predictors were correlated? We can do that by simply rotating our data
from Figure 4 in an upward or downward direction. Note that now, setting x1 or x2 to zero causes us
to lose a lot of structure in our data.

• If we knew how to rotate our data, we could preserve more structure. PCA gives us the rotation to
put the data back into an uncorrelated setting. See Figure 6.

5



Figure 5: A plot of predictors x1 and x2. Note that our predictors are correlated, and this is simply a
rotation of our previous data. (0, x2) is represented by the blue dots, and (x1, 0) is represented by the red
dots.

Figure 6: A plot of uncorrelated predictors (left), correlated predictors (center), and the PCA version of the
correlated predictors (right).
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