
Statistical Machine Learning 23 — Nonlinear embeddings 11/17/15

Lecturer: Prof. Homrighausen Scribe: Soo-Young Kim

1 Nonlinear Embeddings

1.1 Lower dimesional (metric) embeddings

Spectral connectivity analysis (SCA) is a general process for finding lower dimensional structure in the
data. It can be...:

• Linear or nonlinear

• Used for dimension reduction or feature creation

• PCA, Fisher discriminant analysis, Locally linear embeddings, Hessian eigenmaps, Laplacian eigen-
maps, kernel PCA

• Useful as an input to classification, clustering, and regression approaches

Let’s take one last look at PCA before proceding

1.2 PCA examples

PCA can do effective dimension reduction (that is, explain most of the data with m < p components) as
long as the data can be efficiently represented as ‘lines’ (or planes, or hyperplanes). In two dimensions, the
example can be found in Figure 1. Figure 1 shows other data structures when PCA doesn’t works well.

Figure 1: The example when PCA can do effective dimension reduction

1

Figure 2: The example when PCA doesn’t reduce dimension effectively

• PCA wants to minimize distances (equivalently maximize variance). This means it slices through the
data at the meatiest point, and then the next one, and so on. If the data are ‘curved’ this is going to
induce artifacts.

• PCA also looks at things as being close if they are near each other in a Euclidean sense
[this is essentially all covariance is].

• On the spiral, our intuition says that things are ‘close’ only if the distance is constrained to go along
the curve. In other words, purple and blue are close, blue and red are not.

1.3 PCA and covariance

PCA: Find the directions of greatest variance. This doesn’t on its face seem like it maintains correlations,
but observe:

var([a, b]>X) = var(ax1 + bx2) = a2V ar(x1) + b2V ar(x2) + 2abCov(x1, x2)

If we standardize the matrix, then this reduces to

var(ax1 + bx2) = a2 + b2 + 2abCov(x1, x2)

This gets maximized over a2 + b2 = 1.

• If Cov(x1, x2) ≈ 0, then this gets maximized by any a2 + b2 = 1 (it doesn’t matter)

• If Cov(x1, x2) ≈ 1, then this gets maximized by setting a = b = 1/
√

2

So, in either case, we are really maintaining correlations

Correlation is fundamentally a linear phenomenon

1.4 Graphical example of the phenomenon

library(mvtnorm)

2

sigma = matrix(c(1,sig,sig,1),nrow=2)

nsweep = 1000

outcome = matrix(0,nrow=nsweep,ncol=2)

for(sweep in 1:nsweep){

x = rmvnorm(200,c(0,0),sigma)

out.pca = prcomp(x,center=T,scale=F)

outcome[sweep,] = out.pca$rotation[,1]

}

plot(outcome,xlab=’PC1’,ylab=’PC2’)

2 Kernel PCA (KPCA)

Classical PCA comes from X̃ = X−MX = UDV >, where M = 11>/n and 1 = (1, 1, . . . , 1)>.

However, we can just as easily get it from the outer product

K = X̃X̃> = (I −M)XX>(I −M) = UD2U>

and Σ̂ ∝ X̃>X̃ = V D2V T (I −M)X ∈ Rp×p

The intuition behind KPCA is that K is an expansion into a kernel space, where

Ki,i′ = k(X̃i, X̃i′) = 〈X̃i, X̃i′〉

Reminder: Anytime we see an inner product, we can kernelize it

Following this intuition, the approach is simple:

1. Specify a (symmetric) kernel k

e.g. k(X,X ′) = exp{−γ−1||X −X ′||22}

2. Form Ki,i′ = k(Xi, Xi′)

3. Standardize and get eigenvector decomposition

K = (I −M)K(I −M) = UD2U>

This implicitly finds the inner product:

k(Xi, Xi′) = 〈φ(Xi), φ(Xi′)〉

However, we need only specify the kernel

The scores are still Z = UD

The qth KPCA score is (up to centering)

Ziq =

n∑
i′=1

βi′qk(Xi, Xi′)

where βi′,q = ui′q/dq

Note: As we don’t explicitly generate the feature map, there are no loadings

3

2.1 Reproducing kernel Hilbert space

Reminder: Mercer’s theorem assures us that

k(X,X ′) =

∞∑
j=1

θjφj(X)φj(X
′)

Here, the system (φj)
∞
j=1 spans a space Hk

The function space Hk is known as a reproducing kernel Hilbert space (RKHS)

It can also be thought of as roughly

Hk = {f : f(X) =

n∑
i=1

βik(X,Xi)}

Which has a special inner product
〈f, f〉Hk

=

2.2 Reproducing kernel Hilbert space

Writing

f(X) =

n∑
i=1

βik(X,Xi)

The terms k(X,Xi) are the representers, as

〈k(·, X), f〉Hk
= f(X)

and Hk is called a reproducing kernel Hilbert space (RKHS) as

〈k(·, X), k(·, X ′)〉Hk
= k(X,X ′)

Note: For kernel methods, we are generalizing the finite dimensional Euclidean inner product

〈X,X ′〉 = X>X ′

2.3 Kernel methods via regularization

After specifying a kernel function k, we can define an estimator via

min
f∈Hk

P̂`f + λ

(P̂`f = (1/n)
∑

(Yi − δ(Xi))
2 for the squared error) This is a (potentially) infinite dimensional optimization

problem

hard, especially with a computer

It can be shown that the solution has the form

f̂(X) =

n∑
i=1

βik(X,Xi)

This is known as the representer theorem

4

2.4 Kernel PCA

Reminder: To get the first PC in classical PCA, we want to solve

max
α

Vα>X subject to

Translate this into the kernel setting, and we are trying to solve

max
g∈Hk

Vg(X) subject to

The representer theorem states that a solution to this problem is

ĝ(X) =

n∑
i=1

βik(X,Xi)

Compare

Ziq =

n∑
i′=1

βi′qk(Xi, Xi′)

where βi′,q = ui′q/dq

2.5 KPCA: some results

Figure 3 shows the results with PCA and KPCA methods.

2.6 Semisupervised learning in practice

Looking at:

Ziq =

n∑
i′=1

βi′qk(Xi, Xi′)

this is only defined at our observed features

Write

• Dtrain = {(X1, Y1), . . . , (Xn, Yn)}

• Dtest = {(X∗1 , Y ∗1), . . . , (X∗n∗ , Y
∗
n∗)}

Two common scenarios are

1. We are given Dtrain and X∗1 , . . . , X
∗
n∗ to build f̂

2. We are given only Dtrain to build f̂

5

Figure 3: Results from PCA and KPCA method

6

2.7 Case 1

We are given Dtrain and X∗1 , . . . , X
∗
n∗ to build f̂

Then we can just use straight forward KPCA

Or any unsupervised learning step

1. Form K on Dtrain and X∗1 , . . . , X
∗
n∗

2. Get UD

3. Pass Zq = UD[, 1 : q] to train f̂

4. Get Ŷ = f̂(Zq) ∈ Rn+n∗

2.8 Case 2

We are given only Dtrain to build f̂

Now, we don’t know the coordinates of X∗1 , . . . , X
∗
n∗ in the representation space

To get a new observation X∗ embedded into this representation:

Z0 = D−1U>(I −M)[k∗ −K1/n]

where k∗ = [k(X∗, X1), . . . , k(X∗, Xn)]>

Then we compute:

1. Form K on Dtrain
2. Get UD

3. Pass Zq = UD[, 1 : q] to train f̂

4. Form Z∗q for all X∗1 , . . . , X
∗
n∗

5. Get Ŷtest = f̂(Z∗q) ∈ Rn∗

(Note:K = UD2UT = UD2UT)

2.9 KPCA: summary

Kernel PCA seeks to generalize the notion of similarity using a kernel map

This can be interpreted as finding smooth, orthogonal directions in a RKHS

This can allow us to start picking up nonlinear (in the original feature space) aspects of our data

This new representation can be passed to a supervised method to form a semisupervised learner

Note: From the paper introduced by Scholkopf et al. [1], they mentioned the advantages of nonlinear KCPA
compare to linear PCA: the performance for nonlinear components can be further improved by using more
components than possible in the linear case. Also, the computational complexity of kernel PCA does not
grow with the dimensionality of the feature space that we are implicitely working in.

7

References

[1] Scholkopf, B., Smola, A., and Mller, K.-R. (1999). Kernel principal component analysis. In ADVANCES
IN KERNEL METHODS - SUPPORT VECTOR LEARNING, pages 327–352. MIT Press.

8

	Nonlinear Embeddings
	Lower dimesional (metric) embeddings
	PCA examples
	PCA and covariance
	Graphical example of the phenomenon

	Kernel PCA (KPCA)
	Reproducing kernel Hilbert space
	Reproducing kernel Hilbert space
	Kernel methods via regularization
	Kernel PCA
	KPCA: some results
	Semisupervised learning in practice
	Case 1
	Case 2
	KPCA: summary

