STAT 675 — Homework 4
Due: Dec. 3, 2015

For this assignment, let’s attempt to make a spam filter!. Usually, this would involve a lot of text
processing on a huge number of emails. In this case, someone has created a feature matrix, X,
for us. X has rows given by individual emails and columns given by the number of each word or
character that appears in that email, as well as three different numerical measures regarding capital
letters (average length of consecutive capitals, longest sequence of consecutive capitals, and total
number of capital letters). The response, Y, is given by the user supplied label marking that email
as either spam (Y = 1) or not (Y = 0).

Here is a function that may be useful for this assignment:

miss.class =function(pred.class,true.class,producelutput=FALSE){
confusion.mat = table(pred.class,true.class)
if (produceOutput){
return(l-sum(diag(confusion.mat))/sum(confusion.mat))
}
else{
print (’miss-class’)
print (1-sum(diag(confusion.mat))/sum(confusion.mat))
print (’confusion mat’)
print(confusion.mat)

}
}
this can be called using:
(assuming you make the appropriately named test predictions)

miss.class(Y.hat,Y_0)

Read in the R data set spam.Rdata and read the documentation file spambase.Documentation.
Note that I've flipped the training and test sets so this homework doesn’t take too long to run.

train = !spam$train

test = !train

X = spam$XdataF [train,]
X_0 = spam$XdataF[!train,]
Y = spam3$Y[train]

Y_0O = spam$Y[!train]

#Split data as in 2-fold CV, but without the ’cross’ part
cvTrain = sample(c(T,F),size=sum(train),replace=T,prob=c(.5,.5))
Xcv = X[cvTrain,]

Xcv_0 = X[!cvTrain,]

Ycv Y[cvTrain]

Tt has been estimated that spam (that is, unsolicited bulk) emails cost businesses = $10 billion a year

Ycv_0 = Y[!cvTrain]

For doing classification with the neuralnet package, set the err.fct = ’ce’ for ‘cross-entropy’
and linear.output = F, to use the softmax function (which is the same as the sigmoid). Also,
neuralnet requires a numeric response, so I’ve removed the as.factor.

1. Let’s look at SVMs for the two class classification problem and compare it with neural net-
works. Let’s write the neural network as

Zy = o(aog + a;—X)

W=_08+8"2
w
e

X) =

Now, we classify ¥ = 1 if 7(X) > 1/2, and Y = —1 otherwise.

Write down the form for the SVM (you don’t need to write down the optimization problem,
just how we can go from a hyperplane after transformation by a feature map to a classifier).
Using the notation and terminology (such as activation function, number of hidden units,
etc.) for neural networks, carefully show how the SVC can be seen as a particular instance
of a neural network.

2. Let’s look at the sensitivity with respect to the starting values. Run a simple neural network
and examine the fitted values.

nRep = 3

model.out = as.formula(paste("Ycv ~ ",paste(names(Xcv),collapse=’+’)))

nn.out = neuralnet(model.out,data=Xcv, hidden=c(5), threshold=0.01,rep=nRep,err.fct=’ce’,
linear.output=F)

nn.out$net.result

(a) Qualitatively, how different are the fitted values for each run?

(b) Looking at the predictions on Xcv_0, what are the confusion matrices for each rep?
What are the missclassification rates? Note, you need to form classifications out of the
probabilities formed by

compute (nn.out,Xcv_0,rep=7)$net.result

(c) What is the confusion matrix when using the average of all the probabilites over the
runs instead?

3. We need to specify the complexity of the NN. Unfortunately, neuralnet doesn’t allow for
penalization of the loss function directly, and hence we must use the threshold parameter for
regularization. Note that the nnet package does, but is limited to single layer NNs. Form a
large NN by choosing the number of hidden layers and hidden units. Then, we can select the
threshold parameter using 2-fold CV (technically, we are just doing a single test/training

split instead of a full 2-fold CV. Feel free to do the full CV if you’d like). Be sure to average
over starting values to produce the probability estimates that go into the classifications.

Since this involves a grid search, this problem is well suited to using parallelism over the cores
on your computer. A good reference for parallel in R:

http://journal.r-project.org/archive/2009-1/RJournal_2009-1_Knaus+et+al.pdf

For this question, (i) describe to me the general idea of parallelism as it relates to this problem.
(ii) give me the 2-fold CV estimate of the risk over the included grid (again, by 2-fold CV I
mean the single validation set) (iii) report the threshold that minimizes that estimate of the

risk.

cvF = function(threshold,Xcv,Ycv,Xcv_0,Ycv_0,nRep){

model.out = as.formula(paste("Ycv ~ ",paste(names(Xcv),collapse=’+’)))
#here, you need to choose the complexity of the neural net.
nn.out = neuralnet (model.out,data=Xcv, hidden=c(5,5), threshold=threshold,

rep=nRep,err.fct=’ce’,linear.output=F)
nn.results = matrix(0,nrow=nrow(Xcv_0),ncol=nRep)
for(reps in 1:nRep){

nn.results[,reps] = compute(nn.out,Xcv_0,rep=reps)$net.result
}
probHat = apply(nn.results,1,mean)
YcvHat = rep(0,nrow(Xcv_0))
YcvHat [probHat > .5] =1
test.error = mean(YcvHat != Ycv_0)
return(test.error)
}
library(snowfall)

#set cpus equal to number of cores on your processor
sfInit(restore = TRUE,parallel=TRUE, cpus=2, type="SOCK")

thresholdGrid = 10°c(-5,-3,-1,0,1)
sfLibrary(neuralnet)#this loads the package on each core
result <- sflapply(thresholdGrid, cvF,Xcv,Ycv,Xcv_0,Ycv_0,nRep)

(note that if there are ties, pick the smaller threshold)

. Using your conclusions from the above, fit a neural network to the training data and get
prediction for the test data. Using your code from the previous homework assignment, refit
an SVM with radial kernel (be sure to choose the parameters using CV with the function
tune). Get the confusion matrices and missclassification rates for each method and compare
them.

