1 Brief optimization and convexity detour

1.1 Optimization

An optimization problem can be generally formulated as

$$
\begin{align*}
\operatorname{minimize} & F(x) \tag{1}\\
\text { subject to } & f_{j}(x) \leq 0 \text { for } j=1, \cdots, m \tag{2}\\
& h_{k}(x)=0 \text { for } k=1, \cdots, q \tag{3}
\end{align*}
$$

where
$x=\left(x_{1}, \cdots, x_{n}\right)^{T}$ are the parameters
$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the objective function
$f_{j}, h_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are constraint functions.
Then optimal solution x^{*} is such that $F\left(x^{*}\right) \leq F(x)$ for any x^{*} and x that satisfies equations (2) and (3).

1.2 Convexity

The main dichotomy of optimization programs is convex vs. nonconvex. A convex program is one in which the objective and contraint functions are all convex. The function f is called convex if:

$$
\begin{equation*}
f\left(t x+(1-t) x^{\prime}\right) \leq t f(x)+(1-t) f\left(x^{\prime}\right) \quad \forall x, x^{\prime} \in D, \forall t \in[0,1] \tag{4}
\end{equation*}
$$

Methods for convex optimization programs are (roughly) always global and fast, but not for nonconvex problems. For nonconvex problems,

- Local optimization methods that are fast, but need not find global solution
- Global optimization methods that find global solutions, but are not always fast (indeed, are often slow)

2 Model selection

2.1 All subsets regression

There is a problem for the all subsets regression. In general, it is a nonconvex problem. If there are predictors, then there are 2^{p} possible models without considering interactions. Branch and bound, proposed by Furnival and Wilson [1], is a widely used tool for solving large scale NP-hard combination problems, but it cannot reduce the complexity of the problem. The function regsubsets from leaps package is available in R for the model selection.

2.2 Branch and bound

Let $M=M_{1} \cup \cdots \cup M_{K}$ be the set of all possible solutions and a partition comprised of branches, respectively. Statistically, we think of M as the set of all possible models. Let F be an objective function, then we want to find

$$
F_{*}:=\max _{m \in M} F(m) .
$$

For each M_{k}, define

$$
F_{k}:=\max _{m \in M_{k}} F(m)
$$

and let $\underline{F}_{k}, \bar{F}_{k}$ be a bracket such that

$$
\underline{F}_{k} \leq F_{k} \leq \bar{F}_{k}
$$

Then

$$
\max _{k} \underline{F}_{k}:=\underline{F} \leq F_{*}
$$

The main realization is that the branch M_{k} does not need to be explored if either of the following occur
i. Bound

$$
\bar{F}_{k} \leq \underline{F}
$$

ii. Optimality

$$
\max _{m \in M_{k}} F(m) \text { has been found }
$$

The two main questions remain:

1. How to choose the partition(s)?
2. How to form the bracket?

2.3 Branch and bound for model selection

We want to minimize

$$
F(m)=n \log \left(\hat{R}_{\text {train }}\left(\hat{\beta}_{m}\right)\right)+2|m| .
$$

For a set of models M_{k}, let
$m_{k, i n f}$ be the largest model contained ${ }^{1}$ in every model in M_{k} $m_{k, \text { sup }}$ be a smallest model that contains every model in M_{k}
then, $\forall m \in M_{k}$

$$
\begin{aligned}
& F(m) \geq n \log \left(\hat{R}_{\text {train }}\left(\hat{\beta}_{m_{k, \text { sup }}}\right)\right)+2\left|m_{k, \text { inf }}\right|=L_{k} \\
& F(m) \leq n \log \left(\hat{R}_{\text {train }}\left(\hat{\beta}_{m_{k, \text { inf }}}\right)\right)+2\left|m_{k, \text { sup }}\right|=U_{k}
\end{aligned}
$$

[^0]
2.4 Branch and bound for model selection: An algorithm

1. Define a global variable $b=F(m)$ for any $m \in M$

As an aside, every time $F(m)$ is computed, update b if $F(m)<b$
2. Partition $M=\left\{M_{1}, \ldots, M_{K}\right\}$
3. For each k, if $L_{k}>b$, eliminate the branch M_{k}
4. Gather each remaining M_{k} and set union equal to M
5. Else, recurse and return to 2 .

3 Greedy approximations

3.1 Forward stepwise selection

In the likely event that 2^{p} is too large to be searched over exhaustively, a common greedy approximation is the following: Let \hat{R} be any risk estimate

1. Find $\hat{R}(\emptyset)$: That is, the intercept only model
2. Search over all p single feature models, computing \hat{R} for each one. Say including x_{j} minimizes \hat{R} with a value $\hat{R}\left(x_{j}\right)$. If $\hat{R}\left(x_{j}\right)<\hat{R}(\emptyset)$, add x_{j} to the model and continue. Otherwise terminate
3. Now search over all $p-1$ models that contain x_{j} and find the $x_{j^{\prime}}$ that minimizes \hat{R}. If $\hat{R}\left(x_{j}, x_{j^{\prime}}\right)<$ $\hat{R}\left(x_{j}\right)$, add $x_{j^{\prime}}$ to the model and continue. Otherwise terminate
4. \cdot.

Forward stepwise selection can be used effectively to produce sensible answers in either big data or high dimensional regimes, but it might get trapped in a poor local minimum.

3.2 General stepwise selection

- Backward stepwise selection: it starts with the full model and stepwise remove covariates.
- Stepwise selection: this consider both adding and removing covariates at each step.
- If we want to be sure to include all the important covariates, then we can use AIC/Cp + backward stepwise selection
- If we want to be sure to only include important covariates, then we can use BIC + forward stepwise selection
- If we want to do predictions, use $\mathrm{AIC} / \mathrm{Cp}$, but it isn't clear what method is the best

References

[1] Furnival, G. M. and Wilson, Jr., R. W. (2000). Regressions by leaps and bounds. Technometrics, 42(1):69-79.

[^0]: ${ }^{1}$ This does not have to be in M_{k}

