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1 Brief optimization and convexity detour

1.1 Optimization

An optimization problem can be generally formulated as

minimize F (x) (1)

subject to fj(x) ≤ 0 for j = 1, · · · ,m (2)

hk(x) = 0 for k = 1, · · · , q (3)

where
x = (x1, · · · , xn)T are the parameters
F : Rn → R is the objective function
fj , hk : Rn → R are constraint functions.

Then optimal solution x∗ is such that F (x∗) ≤ F (x) for any x∗ and x that satisfies equations (2) and (3).

1.2 Convexity

The main dichotomy of optimization programs is convex vs. nonconvex. A convex program is one in which
the objective and contraint functions are all convex. The function f is called convex if:

f(tx+ (1− t)x′) ≤ tf(x) + (1− t)f(x′) ∀x, x′ ∈ D,∀t ∈ [0, 1]. (4)

Methods for convex optimization programs are (roughly) always global and fast, but not for nonconvex
problems. For nonconvex problems,

• Local optimization methods that are fast, but need not find global solution

• Global optimization methods that find global solutions, but are not always fast (indeed, are often slow)

2 Model selection

2.1 All subsets regression

There is a problem for the all subsets regression. In general, it is a nonconvex problem. If there are predictors,
then there are 2p possible models without considering interactions. Branch and bound, proposed by Furnival
and Wilson [1], is a widely used tool for solving large scale NP-hard combination problems, but it cannot
reduce the complexity of the problem. The function regsubsets from leaps package is available in R for
the model selection.
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2.2 Branch and bound

Let M = M1∪· · ·∪MK be the set of all possible solutions and a partition comprised of branches, respectively.
Statistically, we think of M as the set of all possible models. Let F be an objective function, then we want
to find

F∗ := max
m∈M

F (m).

For each Mk, define
Fk := max

m∈Mk

F (m)

and let F k, F k be a bracket such that
F k ≤ Fk ≤ F k.

Then
max

k
F k := F ≤ F∗

The main realization is that the branch Mk does not need to be explored if either of the following occur

i. Bound
F k ≤ F

ii. Optimality
max
m∈Mk

F (m) has been found

The two main questions remain:

1. How to choose the partition(s)?

2. How to form the bracket?

2.3 Branch and bound for model selection

We want to minimize
F (m) = n log(R̂train(β̂m)) + 2|m|.

For a set of models Mk, let

mk,inf be the largest model contained1 in every model in Mk

mk,sup be a smallest model that contains every model in Mk

then, ∀m ∈Mk

F (m) ≥ n log(R̂train(β̂mk,sup
)) + 2|mk,inf | = Lk

F (m) ≤ n log(R̂train(β̂mk,inf
)) + 2|mk,sup| = Uk

1This does not have to be in Mk
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2.4 Branch and bound for model selection: An algorithm

1. Define a global variable b = F (m) for any m ∈M
As an aside, every time F (m) is computed, update b if F (m) < b

2. Partition M = {M1, . . . ,MK}

3. For each k, if Lk > b, eliminate the branch Mk

4. Gather each remaining Mk and set union equal to M

5. Else, recurse and return to 2.

3 Greedy approximations

3.1 Forward stepwise selection

In the likely event that 2p is too large to be searched over exhaustively, a common greedy approximation is
the following: Let R̂ be any risk estimate

1. Find R̂(∅): That is, the intercept only model

2. Search over all p single feature models, computing R̂ for each one. Say including xj minimizes R̂ with

a value R̂(xj). If R̂(xj) < R̂(∅), add xj to the model and continue. Otherwise terminate

3. Now search over all p − 1 models that contain xj and find the xj′ that minimizes R̂. If R̂(xj , xj′) <

R̂(xj), add xj′ to the model and continue. Otherwise terminate

4. · · ·

Forward stepwise selection can be used effectively to produce sensible answers in either big data or high
dimensional regimes, but it might get trapped in a poor local minimum.

3.2 General stepwise selection

• Backward stepwise selection: it starts with the full model and stepwise remove covariates.

• Stepwise selection: this consider both adding and removing covariates at each step.

• If we want to be sure to include all the important covariates, then we can use AIC/Cp + backward
stepwise selection

• If we want to be sure to only include important covariates, then we can use BIC + forward stepwise
selection

• If we want to do predictions, use AIC/Cp, but it isn’t clear what method is the best
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