
Statistical Machine Learning 5 — Regularization September 8, 2015

Lecturer: Prof. Homrighausen Scribe: Veronica Burt

1 Previous Lectures

We’ve been discussing

• Bias/variance trade off when selecting a model

• Splitting the model into training/testing components

• Non-convex optimization problems, which lack an efficient solution method

2 Regularization

• Consider having one response variable, and a large number of features or covariates.

• Classically, we use least squares to solve this problem (which minimizes squared error), and then drop
unnecessary covariates from the model using marginal tests.

• Instead of removing dimensions (which is what happen when we set a β̂ = 0), consider shrinking them
to an area around the origin.

• Regularization can always result in a smaller risk than not regularizing if we know which tuning
parameters to pick.

3 Overview of Ridge Regression

• Ridge Regression is also referred to as Tikhonov Regularization.

• It is one of many methods proposed to solve problems that arise from multicollinearity. Multicollinearity
causes our coefficient estimates to be unstable. To control this problem, Ridge Regression provides a
biased estimate of β̂ in hopes that these estimates are more precise than the unbiased estimates.

• It still uses minimized squared error criterion, but subject to ||β||22 ≤ t, where t is fixed ≥ 0.

• When t = 0, all of the β values are set equal to zero.

• When t =∞, we have ordinary least squares regression.

• This method confines β̂ to a region around the origin.

• We know that regularization can always result in a smaller risk, but the question is now ”Which t
value results in a smaller risk than ordinary least squares?”

• λ and t are called tuning parameters, or hyper parameters. They are data dependent.

• Another way to write β̂ is in the LaGrangian form, β̂ridge = argmin (||Y − Xβ||22 + λ||β||22.
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• We have a plethora of solutions based on the value we choose for λ (or t). For every value of λ, there
is a unique value of t, and vice-versa.

• We can choose λ via a risk estimation procedure.

4 Standardization

• Coefficient vectors are not invariant to rescaling.

• Do not penalize the intercept if it is included in the model.

• To address the invariance issue:

Standardize covariates first by subtracting the mean and dividing by the standard deviation; this
makes them unit-less. However, don’t standardize indicator variables since they are already dimen-
sionless.

Standardize the response by subtracting the mean. This helps us stabilize numerical problems.

Don’t include the intercept since it would be equal to the mean of the response variable.

5 Uniqueness

• Note that in ordinary least squares, there are an infinite number of solutions for β̂ if X is rank deficient
(meaning that the rank(X) <p); if Xb = 0 then β̂ + b is a valid least squares solution.

• However, as long as λ > 0, the solution for β̂ridge is always unique. The solution is

β̂ridge = (XTX + λI)−1XTY

• Using the Singular Value Decomposition (X = UDV T ), we can see that estimates of β can be written
as:

β̂LS = V D−1UTY =
∑p
j=1 vj(

1
dj

)uTj Y

β̂ridge = V (D2 + λI)−1DUTY =
∑p
j=1 vj(

dj
d2j+λ

)uTj Y

• If we look at the predictions formed by these estimates, we see

Xβ̂LS = (UDV T )(V D−1UTY ) = (UUTY ) =
∑p
j=1 uju

T
j Y

Xβ̂ridge = (UDV T )(V (D2 + λI)−1DUTY ) = UD(D2 + λI)−1DUTY =
∑p
j=1 uj(

d2j
d2j+λ

)uTj Y

• This leads us to conclude that Ridge Regression shrinks the data by an additional factor of λ.

6 Bayes Approach

• Consider a hierarchical model where the likelihood of Yi ∼ N(Xi
Tβ, σ2) and consider a prior of

β ∼ N(0, τ2I).

• Making some conditional independence assumptions, our posterior is p(β|Y,X, σ2, τ2) ∝ p(Y |, β, σ2)p(β|τ2).

• After kernel matching, we find that the posterior mean is λ = σ2/τ2.
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7 Computation

• The Woodbury Identity states that (A−BC−1E)−1BC−1 = A−1B(C − EA−1B)−1.

• Applying this to the ridge solution for β̂ shows us

β̂ridge = (XTX + λI)−1XTY = XT (XXT + λI)−1Y

• This results in only having to invert an n×n matrix as opposed to a p× p matrix, which can be much
less expensive in terms of computation time in the big data setting.

8 Kernel Ridge Regression

• Suppose we want to make a prediction for X, then our prediction is

f̂(X) = XT β̂ridge = XTXT (XXT + λI)−1Y

• If we transform Xi 7→ φ(Xi) and the range of φ is equipped with an inner product, we can use
〈φ(Xi), φ(Xi′)〉. This is known as kernelization; a technique that makes algorithms more efficient by
using a preprocessing stage to reduce the inputs to the algorithm.

9 The Tuning Parameter

• To select the tuning parameter λ, we can use a risk estimator based on degrees of freedom.

• For ridge regression, the degrees of freedom is df =trace [X(XTX + λI)−1XT ] =
∑p
j=1

d2j
d2j+λ

• Note that as λ approaches zero, we get the number of parameters in our model, p.

• A typical choice is Generalized Cross-Validation (GCV), which is calculated usingGCV (β̂) =
Plβ

(1−df(β̂)/n)2
.

• GCV has similar behavior to AIC, but with a different penalty: log(GCV (β̂)) ∝ log(R̂train)−2log(1−
df(β̂)/n) compared to AIC(β̂) ∝ log(R̂train) + 2n−1df(β̂).

• Using K-fold cross-validation is also common.

• Think of CVK as a function of λ. Choose the λ for which CVK is minimized. Then use this λ value to
compute β̂ridge.
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