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This document will pick up from slide 21 of Linear Methods for Regression: Regularization and continue
through the end of the section.

§Ridge Regression

Ridge regression can be computed with any conventional least squares solving method such as QR factor-
ization, Cholesky Decomposition, or SVD. It can also be solved using the lm function in R by creating the
following augmentation:
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In general, ridge regression seems like a very unusual thing to do. We are making up new observations that
are uncorrelated with the original observations. Regardless, it works.

However, rather than making the augmentation in R, a better method is to use the glmnet package in R.
This is initially more complicated, however, it will scale better to more powerful techniques. The glmnet
package is averse to data frames so we need to use matrices.

Here is an example:

ridge.out = cv.glmnet(x=X, y=Y, alpha = 0)

Setting alpha equal to 0 tells glmnet to do ridge regression.

Although Ridge Regression is computationally feasible (it is a convex optimization problem), it does not
help us with model selection; it only shrinks the coefficients towards zero, but does not actually zero any
out. Remember, forward, backward, and all subsets regression all help with model selection, but the opti-
mization problem is non-convex. Although ridge regression uses an L2 penalization term, that is not the
only possibility.

Consider:

Ridge regression: min ||Y− Xβ||22 subject to ||β||22 ≤ t
Best linear Regression Model: min ||Y− Xβ||22 subject to ||β||0 ≤ t , where (||β||0 = the number of nonzero
elements in β)

Both of these possibilities are less than ideal. Ridge regression is computationally feasible but does not do
model selection. Best Linear Regression Model does model selection but is not computationally feasible. In
order to get a geometric sense of why this is the case, we can see some very informative graphics in the slides.
They plot norms ranging from 0 (the counting norm) to 2. From the plots, we can see that the counting
norm is not convex, but does have corners, allowing some coefficients to be zeroed out (model selection).
The L2 norm is convex, but does not have corners and hence, cannot do model selection. However, the L1
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norm allows both. It gives us the best of all possible worlds. Regression with an L1 penalization term is
called lasso.

§Least Angle Selection and Shrinkage Operator (lasso)

The estimator satisfies β̂lasso(t) = arg min||β||1≤t ||Y− Xβ||22

Equivalently, we can write its Lagrangian dual form: β̂lasso(λ) = arg minβ ||Y− Xβ||22 + λ||β||1

In R, using glmnet, setting alpha equal to 1, tells the package to use Lasso:

lasso.out = glmnet(x=as.matrix(X), y = Y, alpha = 1)

The glmnet package uses gradient descent to find the lasso solution as there is no closed-form solution.

§Gradient Descent

Gradient descent is an intuitive concept. If you have a convex function, the algorithm will walk to the lowest
point.

In general, gradient descent uses the following steps:

1. Start with some initial point x0.

2. Propose a new point x to reduce the function F (x).

3. Alternate between 1 and 2 until the objective function changes less than some prespecified small
threshold.
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The graphic on the previous page is a cartoonish example; there are often many ”buckets.” This means
that gradient descent depends heavily on the starting value, so many starting values need to be chosen and
iterated to completion. Here is an example of gradient descent with F (x) = ||Y −Xβ||22 (multiple regression
with least squares):

min
β
||Y − Xβ||22 ⇒

∂

∂βj
||Y − Xβ||22

=
∂

∂βj

n∑
i=1

(Yi −X>i β)2

= 2

n∑
i=1

(Yi −X>i β)Xij

We will cycle over j and update through k = 1, . . . ,K iterations:

β̂k+1
j = β̂kj −

n∑
i=1

(Yi −X>i β̂k)Xij

Note that this equation does not involve require any matrix inversions, making it quite computationally
efficient, and that it uses all the data.

§Choosing λ

The parameter λ needs to be chosen for lasso as in ridge regression. This can easily be done with cross-
validation:

lambda = cv.glmnet(x = as.matrix(X), y = Y, alpha = 1)

However, there are other possibilities to choose from and there is ongoing research in this area.

There are many different variations of lasso, each with a particular niche. Although it may be easy to
implement the standard version of lasso using the glmnet or LARS package in R, you will likely be able to
improve your performance by choosing a variation that is tailored to your specific task. Variations of lasso
include, but are not limited to: Grouped lasso, refitted lasso, Dantzig selector, elastic net, SCAD,

√
lasso,

and generalized lasso.
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