
Statistical Machine Learning 8 — Linear Method For Classification 12/01/2015

Lecturer: Prof. Homrighausen Scribe: Lyuou Zhang

1 Bayes’ rule-ian approach

Suppose that

• pg(X) = P(X|Y = g) is the likelihood of the covariates given the class labels

• πg = P(Y = g) is the prior

Then

P(Y = g|X) =
pg(X)πg∑
g∈G pg(X)πg

∝ pg(X)πg

is the Bayes rule.

2 Discriminant analysis

Suppose that

pg(X) ∝ |Σ|−1/2e−(X−µg)>Σ−1(X−µg)/2

Then the log-odds between two classes g, g′ is:

log

(
P(Y = g|X)

P(Y = g′|X)

)
= log

pg(X)

pg′(X)
+ log

πg
πg′

= log
πg
πg′
− (µg + µg′)

>Σ−1(µg − µg′)/2

+X>Σ−1(µg − µg′)

This is linear in X, and hence has a linear decision boundary

2.1 Types of discriminant analysis

The linear discriminant function is (proportional to) the log posterior:

δg(X) = log πg +X>Σ−1µg − µ>g Σ−1µg/2

and we assign g(X) = argming δg(X)
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2.2 Linear/regularized discriminant analysis

Now, we must estimate µg and Σ. If we...

• use the intuitive estimators µ̂g = Xg (sample mean of all X s.t. Y = g) and

Σ̂ =
1

n−G
∑
g∈G

∑
i∈g

(Xi − µ̂g)(Xi − µ̂g)>

then we have produced linear discriminant analysis (LDA)

• regularize these ‘plug-in’ estimates, we can form regularized discriminant analysis (Friedman (1989)).
This could be (for λ ∈ [0, 1]):

Σ̂λ = λΣ̂ + (1− λ)σ̂2I

3 LDA intuition

Intuitively, assigning observations to the nearest Xg (but ignoring the covariance) would amount to

g̃(X) = argming ||X −Xg||22
= argmingX

>X − 2X>Xg +X
>
g Xg

= argming −X>Xg +
1

2
X
>
g Xg

compare this to:

ĝ = argmingX
>Σ̂−1

λ Xg −
1

2
X
>
g Σ̂−1

λ Xg︸ ︷︷ ︸
likelihood

+ log(π̂g)︸ ︷︷ ︸
prior

The difference is we weight the distance by Σ̂−1
λ and weight the class assignment by fraction of observations

in each class.

3.1 Performance of LDA

The quality of the classifier produced by LDA depends on two things:

• The sample size n

This determines how accurate the π̂g, µ̂g, and Σ̂ are

• How wrong the LDA assumptions are

That is: X|Y = g is a Gaussian with mean µg and variance Σ

3.2 The LDA variance assumption

The assumption: Σg = Σ provides two benefits:

• Allows for estimation when n isn’t large compared with Gp(p+ 1)/2
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• Lowers the variance of the procedure (but produces bias)

However, when n is large compared with Gp(p+ 1)/2

Then the induced bias can outweigh the variance

(This is hard to determine. Usually compare the prediction error on test set)

We relax the assumption and let X|Y = g have

• mean µg

• variance Σg

This makes the decision boundary quadratic
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