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Notation

Reminder: For either classification or regression, we produce
predictions for a given covariate vector X

That is, we form

Ŷ = f̂ (X ) or Ŷ = ĝ(X )

where

• f̂ or ĝ is some procedure formed with the training data
(Examples: β̂ formed by least squares)

• The prediction Ŷ formed at a desired covariate vector X
(Example: Ŷ = X>β̂ formed by least squares)
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Bagging

Many methods (trees included) tend to be designed to have
lower bias but high variance

This means that if we split the training data into two parts at
random and fit a decision tree to each part, the results could
be quite different

A low variance estimator would yield similar results if applied
repeatedly to distinct data sets
(consider f̂ (X ) = 0 for all X )

Bagging, also known as Bootstrap AGgregation, is a general
purpose procedure for reducing variance.

We’ll use it specifically in the context of trees, but it can be
applied more broadly.
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Bagging: The main idea
Suppose we have n uncorrelated observations Z1, . . . ,Zn, each
with variance σ2.

What is the variance of

Z =
1

n

n∑
i=1

Zi?

Answer: σ2/n.

More generally, if we have B separate (uncorrelated) training
sets, we could form B separate model fits,

f̂ 1(X ), . . . , f̂ B(X )

Then average them:

f̂B(X ) =
1

B

B∑
b=1

f̂ b(X )
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Bagging: The bootstrap part

Of course, this isn’t practical as having access to many
training sets is unlikely.

We therefore turn to the bootstrap to simulate having many
training sets.

The bootstrap is a widely applicable statistical tool that can be
used to quantify uncertainty without Gaussian approximations.

Let’s look at an example.
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Bootstrap detour

6



Bootstrap detour
Suppose we are looking to invest in two financial instruments,
X and Y . The return on these investments is random, but we
still want to allocate our money in a risk minimizing way.

That is, for some α ∈ (0, 1), we want to minimize

Var(αX + (1− α)Y )

The minimizing α is:

α∗ =
σ2
Y − σ2

XY

σ2
X + σ2

Y − 2σ2
XY

(Here, σ2
XY is the covariance between X and Y )

which we can estimate via

α̂ =
σ̂2
Y − σ̂2

XY

σ̂2
X + σ̂2

Y − 2σ̂2
XY
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Bootstrap detour
Now that we have an estimator of α, it would be nice to have
an estimator of its variability. In this case, computing a
standard error is difficult.

Suppose for a moment that we can simulate a large number of
draws (say 1000) of the data, which has actual value α = 0.6.
Then we could get estimates α̂1, . . . , α̂1000:
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Bootstrap detour
Histogram of results
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The mean of all of these is:

α =
1

1000

1000∑
r=1

α̂r = 0.599,

which is very close to 0.6 (red line), and the standard error is√√√√ 1

1000− 1

1000∑
r=1

(α̂r − α)2 = 0.035.
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Bootstrap detour

The standard error of 0.035 gives a very good idea of the
accuracy of α̂ for a single sample. Roughly speaking, for a new
random sample, we expect α̂ ∈ (α− 2 ∗ 0.035, α + 2 ∗ 0.035).

In practice, of course, we cannot use this procedure as it relies
on being able to draw a large number of (independent)
samples from the same distribution as our data.

This is where the bootstrap comes in.

We instead draw a large number of samples directly from our
observed data. This sampling is done with replacement, which
means that the same data point can be drawn multiple times.
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Bootstrap detour: Small example

Suppose we have data D = (4.3, 3, 7.2, 6.9, 5.5).

Then we can draw bootstrap samples, which might look like:

D∗1 = (7.2, 4.3, 7.2, 5.5, 6.9)

D∗2 = (6.9, 4.3, 3.0, 4.3, 6.9)

...

D∗B = (4.3, 3.0, 3.0, 5.5, 6.9)

It turns out each of these D∗b have very similar properties as D
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Bootstrap detour: Small example

Now, we form the bootstrap mean:

meanB =
1

B

B∑
b=1

α̂∗b

The bootstrap estimator of the standard error is:

SEB =

√√√√ 1

B

B∑
b=1

(α̂∗b −meanB)2

12



Bootstrap detour
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Bootstrap: End detour

Summary:

Suppose we have data D = (Z1, . . . ,Zn) and we want to get
an idea of the sampling distribution of some statistic f̂ trained
on D.

Then we do the following: Fix a large number B
(B could be, say, 1000)

Then for each b = 1, . . . ,B

1. Form a new bootstrap draw from D, call it D∗

2. Compute f̂ ∗b from D∗

Now, we can estimate the distribution of f̂ trained on D by
looking at the distribution of the B draws, f̂ ∗b
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End detour
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Bagging: The bootstrap part

Now, instead of having B separate training sets, we train on B
bootstrap draws:

f̂ ∗1 (X ), . . . , f̂ ∗B (X )

and then average them:

f̂bag(X ) =
1

B

B∑
b=1

f̂ ∗b (X )

This process is known as Bagging
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Bagging trees
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Bagging trees

The procedure for trees is the following

1. Choose a large number B .

2. For each b = 1, . . . ,B , grow an unpruned tree on the bth

bootstrap draw from the data.

3. Average all these trees together.

Each tree, since it is unpruned, will have (low/high) variance
and (low/high) bias

Therefore averaging many trees results in an estimator that
has lower variance and still low bias.
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Additional tree bagging topics
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Bagging trees
Now that we are growing a large number (B) of random trees,
we can’t directly look at the dendrogram

We no longer have that nice diagram that shows the
segmentation of the predictor space (More accurately, we have B of

them)

However, we do get some helpful information instead:

• Mean decrease variable importance

• Permutation variable importance

• Out-of-Bag error estimation (OOB)
(Each time a tree is grown, we can get its prediction error on the unused

observations. We average this over all bootstrap samples)

• Proximity plot
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Mean decrease variable importance

Observation: At every split of a node, the loss function
decreases

Hence, adding up the amount of decrease for each covariate
over all trees gives an indication of feature importance

Intuitively an important covariate is one that if split upon, it
leads to a large drop in loss function
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Mean decrease variable importance

To recover some information, we can do the following:

1. For each of the B trees and each of the p features, we
record the amount that the Gini index (or cross-entropy)
is reduced by the addition of that feature

2. Report the average reduction over all B trees

This gives us an indication of the importance of a feature
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Mean decrease variable importance
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Out-of-Bag samples (OOB)

One can show that, on average, drawing n samples from n
observations with replacement results in about 2/3 of the
observations being selected.

The remaining one-third of the observations not used are
referred to as out-of-bag (OOB)
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Out-of-Bag samples (OOB)

We can think of it as a for-free cross-validation

The observations that aren’t included serve as test data

This provides a free estimate of prediction risk for each tree

We can therefore get an overall estimate of prediction risk by
averaging these estimates over all bootstrapped trees

25



Permutation variable importance

Consider the bth bootstrap sample

1. The OOB prediction accuracy is recorded for the bth tree

2. The j th feature is randomly permuted in the OOB sample
(ie: If DOOB,b = (Zt1 , . . . ,Ztn/3

) then permute X j
t to form X̃ j

t and hence

Z̃ti = (Yti ,X
1
ti
, . . . , X̃ j

ti
, . . . ,X p

ti
).)

3. The prediction error is recomputed and the change in
prediction error is recorded
(That is, get the OOB error rate for D̃OOB,b = (Z̃t1 , . . . , Z̃tn/3

))

Intuition: If a feature is highly important, then the OOB
prediction error should increase substantially after permuting
the OOB values for that feature
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Proximity plot

For the bth tree, we can examine which OOB observations are
assigned to the same terminal node

Form an n× n matrix P and increment P[i , i ′]← P[i , i ′] + 1 if
Zi and Zi ′ are assigned to the same terminal node

Now, use some sort of dimension reduction technique to
visualize the data in 2-3 dimensions
(Multidimensional scaling is most commonly used (between observation distances are

preserved))

The idea is that even if the data have combinations of
qualitative/quantitative variables and/or have high dimension,
we can view their similarity through the forward operator of
the bagged estimator
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Random forest
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Random Forest

Random Forest is a small extension of Bagging, in which the
bootstrap trees are decorrelated

The idea is, we draw a bootstrap sample and start to build a
tree.

- At each split, we randomly select m of the possible p
features as candidates for the split.

- A new sample of size m of the features is taken at each
split.

Usually, we use about m =
√
p

(this would be 7 out of 56 features for GDP data)

In other words, at each split, we aren’t even allowed to
consider the majority of possible features!
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Random Forest
What is going on here?

Suppose there is 1 really strong feature and many mediocre
ones.

- Then each tree will have this one feature in it,

- Therefore, each tree will look very similar (i.e. highly
correlated).

- Averaging highly correlated things leads to much less
variance reduction than if they were uncorrelated.

If we don’t allow some trees/splits to use this important
feature, each of the trees will be much less similar and hence
much less correlated.

Bagging is Random Forest when m = p, that is, when we can
consider all the features at each split.
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Random forest

An average of B i.i.d random variables has variance

σ2

B

An average of B random variables has variance

ρσ2 +
(1− ρ)σ2

B

for correlation ρ

As B →∞, the second term goes to zero, but the first term
remains

Hence, correlation of the trees limits the benefit of averaging
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Sensitivity and specificity

Sensitivity: The proportion of times we label recession,
given that recession is the correct answer.

Specificity: The proportion of times we label no recession,
given that no recession is the correct answer.

We can think of this in terms of hypothesis testing. If

H0 : no recession,

then

Sensitivity: P(reject H0|H0 is false), [1 - P(Type II error)]
Specificity: P(accept H0|H0 is true), [1 - P(Type I error)]
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Confusion matrix
We can report our results in a matrix:

Truth
Recession No Recession

Our Recession (A) (B)
Predictions No Recession (C) (D)

The total number of each combination is recorded in the table.

The overall miss-classification rate is

(B) + (C)

(A) + (B) + (C) + (D)
=

(B) + (C)

total observations

What is the sensitivity/specificity?

(Sensitivity is (A)/[(A) + (C)], Specificity is (D)/[(B) + (D)])
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Tree results: Confusion matrices

Our
Preds

Truth
Growth Recession Mis-Class

Null Growth 111 26
Recession 0 0 18.9%

Tree Growth 99 3
Recession 12 23 10.9%

Random Growth 102 5
Forest Recession 9 21 10.2%
Bagging Growth 104 3

Recession 7 23 7.3%
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Tree results: Sensitivity & specificity

Sensitivity Specificity
Null 0.000 1.000

Tree 0.884 0.891

Random 0.807 0.918
Forest
Bagging 0.884 0.936
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Out-of-bag error estimation for

bagging

Truth
Growth Recession Miss-Class

OOB Bagging Growth 400 10
Recession 21 46 6.5%

Test Bagging Growth 104 3
Recession 7 23 7.3%
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Random Forest in R

require(randomForest)

out.rf = randomForest(X,Y,importance=T,mtry=p)

class.rf = predict(out.rf,X_0)

Notes:

• The importance statement tells it to produce the variable
importance measures

• the mtry = p tells randomForest to consider all the
covariates at each split
(This particular choice corresponds to bagging)

• randomForest also supports formulae

out.rf = randomForest(Y~.,data=X)

However, it can take much longer to run
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Random Forest in R

> out.rf

Call:

randomForest(formula = Y~.,data = X, import = T, mtry = p)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 56

OOB estimate of error rate: 7.33%

Confusion matrix:

0 1 class.error

0 508 13 0.02495202

1 32 61 0.34408602
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Random Forest in R

#Permutation variable importance

> head(importance(out.rf,type=1))

MeanDecreaseAccuracy

Alabama 3.7277511

Alaska 1.7941463

Arizona 2.9659623

Arkansas 0.8341577

California 7.2973572

#Mean decrease variable importance

> head(importance(out.rf,type=2))

MeanDecreaseGini

Alabama 0.4551073

Alaska 1.6440170

Arizona 0.7025527

Arkansas 0.3503138

California 1.4616203

#variable importance plot:

varImpPlot(out.rf,type=2)
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Additional random forest topics
Claim: Random forest cannot overfit. This is and isn’t true.

Write

f̂ Brf =
1

B

B∑
b=1

T (x ; Θb)

where Θb characterizes the bth tree
(That is, the split variables, cutpoints of each node, terminal node values)

Increasing B does not cause Random forest to overfit, rather
removes the Monte-Carlo-like approximation error

f̂rf (x) = EΘT (x ,Θ) = lim
B→∞

f̂ Brf

However, this limit can overfit the data, the average of fully
grown trees can result in too complex of a model
(Note that Segal (2004) shows that a small benefit can be derived by stopping each

tree short, but thus induce another tuning parameter) 40



Additional random forest topics

Things I’d like to cover but may not
(AKA possible short presentation topics)

• Variance and decorrelation effect (showing precisely how
random forest may work/not work)

• Introduction of noise covariates improves performance

• Using subsampling instead of bootstrap to generate trees
(This is an idea I had while writing this up. I don’t know if this exists, but it

seems to work in many cases the bootstrap doesn’t and is easier to do theory

(just use Hoeffding’s inequalty for U-statistics))

• Adaptive nearest neighbors
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