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Boosting overview

Recall: Bagging is a procedure for taking a low bias, high
variance procedure and (potentially) reducing its risk via
averaging

Boosting has a similar philosophy: take a poor classifier and
improve it

However, boosting is useful for the opposite situation: a
classifier that has high bias but low variance!
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Boosting overview

A direct contrast:

• Bagging: aggregates over many independent bootstrap
draws

• Boosting: finds the observations that are poorly
classified, up weights these observations, and then trains
a new classifier
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Boosting for Regression
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Boosting for regression

There are three main ingredients to boosting:

• A base learner f̂
(This f̂ will commonly have some parameters determining its complexity. These

are commonly set at very low complexity values)

• A learning rate λ

• The number of base learners B
(This will act a bit like the number of iterations for random forest. However,

the details are quite different)
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Boosting regression trees

A classic example of a base learner is (regression) trees

Recall: Trees tend to have a low bias but high variance.
This makes them well-suited for boosting

Before discussing boosting further, it is instructive to examine
a basic implementation
(We will get to motivation and classification later)
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Boosting regression trees

Set f̂ ≡ 0 and R = Y ∈ Rn

Fix the tree complexity M and learning rate λ
(Small values of M are used, such as M ∈ {1, . . . , 8}, where M is the number of splits)

For b = 1, . . . ,B , do:

1. Fit f̂b with M + 1 regions to D̃ = {(X1,R1), . . . , (Xn,Rn)}
2. Update: f̂ ← f̂ + λf̂b

3. Update: R ← R − f̂

Output:

f̂ =
B∑

b=1

λf̂b

This is an additive model
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Boosting trees

In general

• A smaller λ means a larger required B

• Too large of λ means we take too long of steps, leading
to poor solutions
(Recall: gradient descent)

In practice,

• B is set via cross-validation or other risk estimate
(Boosting is largely insensitive to overfitting by choosing B too large)

• λ is set at a small level, say λ = 0.01

As for the additive model part...
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Curse of dimensionality and
local averaging
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From linear to nonlinear models

Goal: Develop a prediction function f̂ : Rp → R for
predicting Y given an X

Commonly, f̂ (X ) = X>β
(Constrained linear regression)

This greatly simplifies algorithms, while not sacrificing too
much flexibility

However, sometimes directly modeling the nonlinearity is more
natural
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Prediction via local averaging

The fundamental quantities of interest we have been modeling
are the Bayes’ rules

E[Y |X ] or arg max
g

P(Y = g |X )

We know how to estimate expectations: if Y1,Y2, . . . ,Yn all
have expectation µ, then

µ̂ =
1

n

n∑
i=1

Yi

is an intuitive estimator of µ
(and a reasonable prediction of a new Y )
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Prediction via local averaging

Similarly, we can estimate E[Y |X ] with D:

f̂ (X ) =
1

nX

nX∑
i=1

Yi1(Xi = X )

where nX =
∑n

i=1 1(Xi = X ).
(In words: we are taking an average of all the observations Yi such that Xi = X . This

is all conditional expectation really is)

12



Prediction via local averaging

There is a problem: There generally aren’t any Xi at X !

Suppose we relax the constraint Xi = X a bit and include
points that are close enough instead

Again, suppose we have data (X1,Y1), (X2,Y2), . . . , (Xn,Yn)

f̂ (X ) =
1

nX

nX∑
i=1

Yi1(||Xi − X || ≤ t)

where nX =
∑n

i=1 1(||Xi − X || ≤ t).

Here, t quantifies the notion of closeness
(In fact, it is a tuning parameter)
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Prediction via local averaging
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Prediction via local averaging
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Prediction via local averaging
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Prediction via local averaging
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From linear to nonlinear models

Question: Why don’t we always fit such a flexible model?

Answer: This works great if p is small
(and the specification of nearness is good)

However, as p gets large

• nothing is nearby

• all points are on the boundary
(Hence, predictions are generally extrapolations)

These aspects make up (part) of the curse of dimensionality
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Curse of dimensionality

Fix the dimension p
(Assume p is even to ignore unimportant digressions)

Let S be a hypersphere with radius r

Let C be a hypercube with side length 2r

Then, the volume of S and C are, respectively

VS =
rpπp/2

(p/2)!
and VC = (2r)p

(Interesting observation: this means for r < 1/2 the volume of the hypercube goes to

0, but the diagonal length is always ∝ √p. Hence, the hypercube gets quite ‘spiky’

and is actually horribly jagged. Regardless of radius, the hypersphere’s volume goes to

zero quickly.)
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Curse of dimensionality

Hence, the ratio of the volumes of a circumscribed
hypersphere by a hypercube is

VC

VS
=

(2r)p · (p/2)!

rpπp/2
=

2p · (p/2)!

πp/2
=

(
4

π

)d

d !

where d = p/2

Observation: This ratio of volumes is increasing really fast.
This means that all of the volume of a hypercube is near the
corners. Also, this is independent of the radius.
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Additive models
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Additive models

We can find a combination of linear models and nonlinear
models that provides flexibility while shielding us somewhat
from the dimension problem

Write

f (X ) = f1(x1) + · · ·+ fp(xp) =

p∑
j=1

fj(xj)

Estimation of such a function is not much more complicated
than a fully linear model (as all inputs enter separately)

The algorithmic approach is known as backfitting
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Additive models (for regression)

Additive models are usually phrased using the population level
expectation
(These get replaced with empirical versions)

The update is a Gauss-Seidel-type update
(The Gauss-Seidel method is an iterative scheme for solving linear, square systems)

This is for j = 1, . . . , p, 1, . . . , p, 1 . . .:

fj(xj)← E

[
Y −

∑
k 6=j

fk(xk)|xj

]

Under fairly general conditions, this converges to E[Y |X ]
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Additive models (for regression)

Backfitting for additive models is roughly as follows:

Choose a univariate nonparametric smoother S and form all
marginal fits f̂j
(Commonly a cubic smoothing spline)

Iterate over j until convergence:

1. Define the residuals Ri = Yi −
∑

k 6=j f̂k(X k
i )

2. Smooth the residuals f̂j = S(R)

3. Center f̂j ← f̂j − n−1
∑n

i=1 f̂j(X
j
i )

Report
f̂ (X ) = Y + f̂1(x1) + · · ·+ f̂p(xp)
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Fitting additive models R

library(gam)

x = seq(0,2*pi,length=10)

xx = expand.grid(x,x)

X1 = xx[,1]

X2 = xx[,2]

Y = sin(xx[,1]) - (xx[,2] - pi)^2 + rnorm(nrow(xx),0,.1)

sim = data.frame(X1=X1,X2=X2,Y=Y)

out = gam(Y~s(X1,3)+s(X2,3),data=sim)

25



Additive models: Simulation
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Additive models: Simulation results
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regression)
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Detour: Plotting 3d in R

out = scatterplot3d(X1,X2,Y,pch=16,type=’n’)

xyz = out$xyz.convert(X1,X2,out.pred)

points(xyz,col=’red’,pch=15)

xyz = out$xyz.convert(X1,X2,out.pred.lm)

points(xyz,col=’blue’,pch=17)
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Additive models (for regression)

More generally, we can consider each function in the sum to
be a function of all input variables

Example: fb(X ) = fb(xb)
(That is, the function only depends on one component of X )

The resulting model would be

B∑
b=1

fb(X )

How can we fit this?
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(Functional) Gradient descent

Let `(f ,Y ) be a loss function and R be the risk

Example: `(f ,Y ) = (f (X )− Y )2 and R(f ) = P`(f ,Y )

Out goal is to minimize R(f ) over f .

Example: For squared error loss, the minimizer is PY |X

How about in general?
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(Functional) Gradient descent

Form the gradient:

g =
∂R

∂f
= P

∂`(f ,Y )

∂f

For b = 1, . . . ,B

fb = fb−1 − λg
∣∣∣∣
f =fb−1

It can be shown that by taking B large enough, fB → PY |X
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(Functional) Gradient descent

The previously written algorithm isn’t usable with data
(We need to estimate P)

If we instead use

ĝ(Xi) =
∂`(f (Xi),Yi)

∂f

for i = 1, . . . , n

This procedure both overfits and is only defined at the
observed Xi
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(Functional) Gradient descent

A way of preventing the overfitting is to restrict the subspace
of functions we are looking at

Let F be a class of functions

After forming ĝ , we restrict it via projection to be in F
(This grabs the element of F most parallel to ĝ)
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(Functional) Gradient descent

A data-based algorithm is now: For b = 1, . . . ,B , do:

1. Ri ← −ĝ(Xi)

∣∣∣∣
f =f̂b−1

= ∂`(f (Xi ),Yi )
∂f

∣∣∣∣
f =f̂b−1

2. f̂ ← argminf ∈F ||R − f ||22
(Projection step, allowing for f̂ to be defined at new X )

3. Update: f̂b ← f̂b−1 + λf̂
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(Functional) Gradient descent

Let’s look at step 1. more closely:

∂`(f (Xi),Yi)

∂f
=
∂(f (Xi)− Yi)

2

∂f
= 2(f (Xi)− Yi)

Observation: These are (twice) the residuals
(Hence, as in SVM, usually we use (f (X )− Y )2/2)
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(Functional) Gradient descent

Reminder: Back to boosting. Fix any b

1. Fit f̂b with M + 1 regions to D̃ = {(X1,R1), . . . , (Xn,Rn)}
2. Update: f̂ ← f̂ + λf̂b

3. Update: R ← R − f̂

Compare: Functional gradient descent:

1. Ri ← −∂`(f (Xi ),Yi )
∂f

∣∣∣∣
f =f̂b−1

= 2(Yi − f (Xi))

2. f̂ ← argminf ∈F ||R − f ||22
(Projection step, let F be class of trees with M + 1 regions)

3. Update: f̂b ← f̂b−1 + λf̂
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(Functional) Gradient descent

Conclusion: These approaches are the same!

Boosting is an algorithmic way of fitting a general additive
model using data

Now, we need to transfer this insight to classification..
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