BooOSTING 2: CLASSIFICATION

-STATISTICAL MACHINE LEARNING-

Lecturer: Darren Homrighausen, PhD

ADDITIVE MODELS (FOR CLASSIFICATION)

As squared error loss isn't quite right for classification, additive
logistic regression is a popular approach

Suppose Y € {—1,1}

ot (1) = >) = %)

This gets inverted in the usual way to acquire a probability

estimate
eh(X)

1+ ehX)
(h(X) = X T8 gives us (linear) logistic regression, with classifier g(X) = sgn(h(X)))

7(X) = B(Y = 1|X) =

These models are usually fit by numerically maximizing the
binomial likelihood, and hence enjoy all the asymptotic
optimality features of MLEs

ADDITIVE MODELS (FOR CLASSIFICATION)

ExampLi: In R, this can be fit with the package gam
In the gam package there is a dataset kyphosis
This dataset examines a disorder of the spine

Let's look at two possible covariates Age and Number

(Number refers to the number of vertebrae that were involved in a surgery)

ADDITIVE MODELS (FOR CLASSIFICATION)

library (gam)
data(kyphosis)

out = gam(Kyphosis~s(Age,3),family=binomial,data=kyphosis)

out.pred = predict(out)

plot(sort (kyphosis$Age) ,out.pred[order (kyphosis$Age)],
type=’1’,xlab=’Age’,ylab="log odds’)

log odds

ADDITIVE MODELS (FOR CLASSIFICATION)

out = gam(Kyphosis ~ s(Age,3) + s(Number,3),
family = binomial, data=kyphosis)
out.pred = predict(out)
plot(sort (kyphosis$Age) ,out.pred[order (kyphosis$Age)],
type=’1’,xlab="Age’ ,ylab="1log odds’)
plot(sort (kyphosis$Number) ,out.pred[order (kyphosis$Number):
type=’1’,x1lab=’Number’,ylab=’log odds’)

g od
g od

Adaboost

ADABOOST OUTLINE

We give an overview of ‘AdaBoost.M1.’
(Freund and Schapire (1997))

First, train the classifier as usual
(This is done by setting w; = 1/n)

At each step b, the misclassified observations have their
weights increased

(Implicitly, this lowers the weight on correctly classified observations)

A new classifier is trained which emphasizes the previous
mistakes

ADABOOST ALGORITHM

1. Initialize w; = 1/n
2. Forb=1,...,B

2.1 Fit gp(X) on D, weighted by w;
2.2 Compute

Ry = Tioa wil(Ys # (X))
Doy Wi

2.3 Find /Bb = |Og((1 — Rb)/Rb)
2.4 Set w; < w;exp{Bp1(Y; # gp(Xi))}

3. OurruT: g(X) =sgn (Zszl Bbgb(X)>

Some supporting simulations

=] 5 = = £ DA

ADABOOST: SIMULATION

Let's use the classifier trees, but with ‘depth 2-stumps’

These are trees, but constrained to have no more than 4
terminal nodes

X2

X1

ADABOOST: INCREASING B (TRAIN)

11

ADABOOST: INCREASING B (TEST)

12

ADABOOST: TRAIN VS. TEST

13

ADABOOST: SIMULATION

Let's change the simulation so that the class probabilities
aren't the same

1.0

0.8

0.6

X2

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

X1

ADABOOST: INCREASING B (TRAIN)

15

ADABOOST: INCREASING B (TEST)

16

ADABOOST: TRAIN VS. TEST

17

Back to Algorithms

ADABOOST

This algorithm became known as ‘discrete AdaBoost'

(This is due to the base classifier returning a discrete label)

This was adapted to real-valued predictions in Real AdaBoost

(In particular, probability estimates)

This terminology was introduced in Friedman's seminal paper
on Functional Gradient Boosting (2001)

19

REAL ADABOOST

1. Initialize w; = 1/n
2. Forb=1,....B
2.1 Fit the cIaAssifier on D, weighted by w; and produce
pp(X) = Pu (Y = 1|X)
2.2 Set hy(X) < 4 log(ps(X)/(1 - ps(X)))
2.3 Set wj + w; eXp{—Y,'hb(X,')}
3. Ourrut: g(X) =sgn (Zle hb(X)>

This is referred to as Real AdaBoost and it used the class

probability estimates to construct the contribution of the b/
classifier, instead of the estimated label

(The distinction between Discrete/Real AdaBoost is reminiscent of 1 vs. 1 and 1 vs.

All multiclass classification)

20

REAL ADABOOST

1. Initialize w; = 1/n
2. Forb=1,....B
2.1 Fit the classifier on D, weighted by w; and produce
po(X) = Pu(Y =1]X)
2.2 Set hp(X) « % log(pp(X)/(1 — pr(X)))
2.3 Set wj + w; eXp{—Y,'hb(X,')}

3. Ourrut: g(X) =sgn (Zle hb(X)>

This is referred to as Real AdaBoost and it used the class

probability estimates to construct the contribution of the b/
classifier, instead of the estimated label

(The distinction between Discrete/Real AdaBoost is reminiscent of 1 vs. 1 and 1 vs.

All multiclass classification)

20

REAL ADABOOST: INCREASING B (TEST)

21

ADABOOST INTUITION

QuesTioN: Why does this work?

ONE ANSWER: Boosting fits an additive model

Ge(X) = Bed(X, 0)

where
e [3 are weights
e ¢ is some that depends on parameters ¢

(ExaMPLE: Trees with all of its splits and terminal node values)

OVERALL: Both discrete and real AdaBoost can be
interpreted as stage wise estimation procedures for fitting
additive logistic regression models

22

(DISCRETE) ADABOOST INTERPRETATION

Forward stagewise additive modeling:
(Using a general likelihood ¢)

L. Bp,0p = argming o > =7 U(Y;, Gp_1(Xi) + Bo(Xi, 0))
2. Set Gb(X) = Gb_l(X) + Bbd)(X, gb)

AdaBoost implicitly does this by use of the exponential

U(Y,G) =exp{—YG(X)}
and basis functions ¢(x, 0) = g,(X)

23

ADABOOST INTUITION

Suppose we minimize exponential loss in a forward stagewise
manner

Doing the forward selection for this loss, we get

(Bb, g6) = argmin > _ exp{—Yi(Gp_1(X;) + B (X))}

se 1

24

ADABOOST INTUITION

Rewriting:

(Bs, 85) = argmin exp{—Yi(Gp-1(Xi) + (X))}

&

= argmin Z exp{—Y;Gp_1(X:) texp{—Y;Bg(X))}

se 4

= argmin Z wiexp{—Y:8g(X;)}
Be i1
Where
e Define w; = exp{—Y,-Gb,l(X,-)}
(This is independent of 3, g)
o > 7 wiexp{—Y;[gu(X;))} needs to be optimized

25

ADABOOST INTUITION
Note that

Zw,exp{ BYig(X; Z w;: + e’ Z w;

iYi=g(X;) i:Yi#g(Xi)

%) Z wil(Y; # g(X))+

+ ei'B Z Wi
i=1
As long as (e — e7#) > 0, we can find

gp = argmin Z w;1(Y; # g(X;))

& =1
(Note: If (e —e=#) <0, then B < 0. However, as 85, = log((1 — Ry)/R»), this
implies R > 1/2. Hence, we would flip the labels and get R"< 1/2!)

26

REMINDER: ADABOOST

1. Initialize w; = 1/n
2. Forb=1,....B
2.1 Fit gp(x) on D, weighted by w;
(This step is finding the next best version of the classifier, trained on

weighted data and added to the previous classifiers)

2.2 Compute

o Sy wl(Y: £ g(X)
Do Wi

2.3 Find ﬁb = Iog((l - Rb)/Rb)
2.4 Set w; < w; exp{Bp1(Y; # gn(Xi))}

3. OutreT: g(X) = sgn (L5, Hres(X))

27

REMINDER: ADABOOST

1. Initialize w; = 1/n
2. Forb=1,....B
2.1 Fit gp(x) on D, weighted by w;
(This step is finding the next best version of the classifier, trained on

weighted data and added to the previous classifiers)

2.2 Compute

o Sy wl(Y: £ g(X)
Do Wi

2.3 Find 85 = log((1 — Ry)/Ry)
2.4 Set w; + w; exp{Bp1(Y; # gu(Xi))}

3. OutreT: g(X) = sgn (L5, Hres(X))

27

ADABOOST INTUITION
GOAL: Minimize

Z w; exp{—0Yign(Xi))}

(Here, we have fixed g = gp)
We showed this can be written
> wiexp{—BYigo(X))} = (¢’ — e)RW + e "W (w=5)
i=1
Take derivative with respect to 3
(® + e RW —e "W Z 0= R, + e #(R, — 1)

Solve for /3 to find B, = 1/2log[(1 — Rp)/Rs)

28

REMINDER: ADABOOST

1. Initialize w; = 1/n
2. Forb=1,....B
2.1 Fit gp(x) on D, weighted by w;
(This step is finding the next best version of the classifier, trained on

weighted data and added to the previous classifiers)

2.2 Compute

o Sy wl(Y: £ g(X)
Do Wi

2.3 Find 85 = log((1 — Ry)/Ry)
2.4 Set w; + w; exp{Bp1(Y; # gu(Xi))}

3. OutruT: g(x) = sgn (S5 Begs(x))

29

REMINDER: ADABOOST

1. Initialize w; = 1/n
2. Forb=1,....B
2.1 Fit gp(x) on D, weighted by w;
(This step is finding the next best version of the classifier, trained on

weighted data and added to the previous classifiers)

2.2 Compute

o Sy wl(Y: £ g(X)
Do Wi

2.3 Find ﬁb = Iog((l - Rb)/Rb)
2.4 Set Wi <— w; exp{ﬂbl(Y,- 7& gb(Xi))}

3. OutruT: g(x) = sgn (S5 Begs(x))

29

ADABOOST INTUITION

The approximation is updated
Gp(X) = Gb-1(X) + Bogs(X)
This causes the weights
w " = exp{—YiGo(X))} = w'” exp{— 5 YVigs(Xi)}
Using — Yign(Xi) = 21(Y; # gu(X;)) — 1, this becomes
Wi(b+1) X W;(b) exp{Ap1(Y; # gv(Xi))}

where (8, < 23, giving the last step of the algorithm

30

OTHER LOSS FUNCTIONS

g = —— Misclassification
—— Expenential
o — Binomial Deviance
i —— Squared Error
— Support Vector
<]
o~
g o
— -
a
n |
(=]
=
=
T T T T T
_2 =1 o 1 2
y-f

(Hastie et al (2009))

31

ADABOOST: THE CONTROVERSY

CrAiM: Boosting is another version of bagging
The early versions of Boosting involved (weighted) resampling

Therefore, it was initially speculated that a connection with
explained its performance

However, boosting continues to work well when
e The algorithm is trained on weighted data rather than on
sampling with weights
(This removes the randomization component that is essential to bagging)
e Weak learners are used that have high bias and low
variance
(This is the of what is prescribed for bagging)

32

ADABOOST: THE CONTROVERSY

CrAimv: Boosting fits an adaptive additive model which
explains its effectiveness

The previous results appeared in Friedman et al. (2000) and
claimed to have ‘solved’ the mystery of boosting

A crucial property of boosting is that is essentially never over
fits

However, the additive model view really should translate into
intuition of ‘over fitting is a major concern,’ as it is with
additive models

33

ADABOOST: THE CONTROVERSY

As adaBoost fits an additive model in the base classifier, it
cannot have higher order interactions than the base classifier

For instance, a stump would provide a purely additive fit
(It only splits on one variable. In general, the complexity of a tree can be interpreted

as the number of included interactions)

It stands to reason, then, if the Bayes' rule is additive in a
similar fashion, stumps should perform well in Boosting

34

ADABOOST: THE CONTROVERSY

A recent paper investigating this property did substantial
simulations using underlying purely additive models
(Mease, Wyner (2008))

Here is an example figure from their paper:

8

b— —

T T T
] 200 400 B0 800 1000
AdaBoost llerations

0.3z

0.28

Misclassification Errar

0.24

F1GURE: Black, bold line: Stumps. Red, thin line: 8-node trees

ADABOOST: THE CONTROVERSY CONTINUES

Ultimately, interpretations are just modes of human
comprehension

The value of the insight is whether it provides fruitful thought
about the idea

From this perspective, AdaBoost fits an additive model.

However, many of the other connections are still of debatable
value

(For example, LogitBoost)

36

NEXT LECTURES

Discuss two current, popular algorithms and their R
implementations

o GBM
e XGBoost

37

