
Boosting 3: Implementations
-Statistical Machine Learning-

Lecturer: Darren Homrighausen, PhD

1



Outline

Now we will discuss two current, popular algorithms and their
R implementations

• GBM

• XGBoost

2



GBM

3



Gradient Boosting Machines (GBM)

Recall: AdaBoost effectively uses forward stagewise
minimization of the exponential loss function

GBM takes this idea and

• generalizes to other loss functions

• adds subsampling

• includes methods for choosing B

• reports variable importance measures

4



GBM: loss functions

• gaussian: squared error

• laplace: absolute value

• bernoulli: logistic

• adaboost: exponential

• multinomial: more than one class (unordered)

• poisson: Count data

• coxph: For right censored, survival data

5



GBM: subsampling

Early implementations of AdaBoost randomly sampled the
weights (w)

This wasn’t essential and has been altered to use deterministic
weights

Friedman (2002) introduced stochastic gradient boosting that
uses a new subsample at each boosting iteration to find and
project the gradient

This has two possible benefits

• Reduces computations/storage
(But increases read/write time)

• Can improve performance

6



GBM: subsampling

You can expect performance gains when both of the following
occur:

• There is a small sample size

• The base learner is complex

This suggests the usual ‘variance reduction through lowering
covariance” interpretation

The effect is complicated, though as subsampling

• increases the variance of each term in the sum

• decreases the covariance of each term in the sum

7



GBM: choosing B

There are three built in methods:

• Independent test set: using the nTrain parameter
to say ‘use only this amount of data for training’
(Be sure to uniformly permute your data set first.)

• Out-of-bag (OOB) estimation: If bag.fraction is
> 0, then gbm use OOB at each iteration to find a good
B
(Note: OOB tends to select a too-small B)

• K -fold cross validation (CV): It will fit
cv.folds+1 models
(The ‘+1’ is the fit on all the data that is reported)

8



GBM: variable importance measure

For tree-based methods, there are two variable importance
measures:

• relative.influence

• permutation.test.gbm
(This is currently labeled experiemental)

These have similar definition relative to bagging, however they
use all of the data instead of the OOB

9



GBM: sample code

gbm(Ytrain~.,data=Xtrain,

distribution="bernoulli",

n.trees=500,

shrinkage=0.01,

interaction.depth=3,

bag.fraction = 0.5,

n.minobsinnode = 10,

cv.folds = 3,

keep.data=TRUE,

verbose=TRUE,

n.cores=2)

10



GBM: Figures

0 200 400 600 800 1000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

B

lo
ss

11



Distributed computing hierarchy

Server

Node

CPU/Processor

Core

Hyperthreading

Example: A server might have

• 64 nodes

• 2 processors per node

• 16 cores per processor

• hyper threading

The goal is to somehow allocate a
job so that these resources are used
efficiently

Jobs are composed of threads, which
are specific computations

12



Hyperthreading

Developed by Intel, Hypertheading allows for each core to
pretend to be two cores

Core

Hyperthreading

Virtual Core Virtual Core

This works by trading off computation and read-time for each
core

13



Boosting: Learning slow

It is best to set the learning rate at a small number.

This is usually calibrated by the computational demands of the
problem.

A good strategy is to pick a number, say .001

Run with n.trees relatively small and see how long it takes

Keep adding trees with gbm.more. If this is taking too long,
increase the learning rate

14



XGBoost

15



XGboost

This stands for:

Extreme Gradient Boosting

It has some advances related to gbm

16



XGboost: Advances

• Sparse matrices: Can use sparse matrices as inputs
(In fact, it has its own matrix-like data structure that is recommended)

• OpenMP: Incorporates OpenMP on Windows/Linux
(OpenMP is a message passing parallelization paradigm for shared memory

parallel programming)

• Loss functions: You can specifiy your own
loss/evaluation functions
(You need to use xgb.train for this)

17




