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Outline

Now we will discuss two current, popular algorithms and their
R implementations

• GBM

• XGBoost
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GBM
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Gradient Boosting Machines (GBM)

Recall: AdaBoost effectively uses forward stagewise
minimization of the exponential loss function

GBM takes this idea and

• generalizes to other loss functions

• adds subsampling

• includes methods for choosing B

• reports variable importance measures
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GBM: loss functions

• gaussian: squared error

• laplace: absolute value

• bernoulli: logistic

• adaboost: exponential

• multinomial: more than one class (unordered)

• poisson: Count data

• coxph: For right censored, survival data
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GBM: subsampling

Early implementations of AdaBoost randomly sampled the
weights (w)

This wasn’t essential and has been altered to use deterministic
weights

Friedman (2002) introduced stochastic gradient boosting that
uses a new subsample at each boosting iteration to find and
project the gradient

This has two possible benefits

• Reduces computations/storage
(But increases read/write time)

• Can improve performance
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GBM: subsampling

You can expect performance gains when both of the following
occur:

• There is a small sample size

• The base learner is complex

This suggests the usual ‘variance reduction through lowering
covariance” interpretation

The effect is complicated, though as subsampling

• increases the variance of each term in the sum

• decreases the covariance of each term in the sum
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GBM: choosing B

There are three built in methods:

• Independent test set: using the nTrain parameter
to say ‘use only this amount of data for training’
(Be sure to uniformly permute your data set first.)

• Out-of-bag (OOB) estimation: If bag.fraction is
> 0, then gbm use OOB at each iteration to find a good
B
(Note: OOB tends to select a too-small B)

• K -fold cross validation (CV): It will fit
cv.folds+1 models
(The ‘+1’ is the fit on all the data that is reported)

8



GBM: variable importance measure

For tree-based methods, there are two variable importance
measures:

• relative.influence

• permutation.test.gbm
(This is currently labeled experiemental)

These have similar definition relative to bagging, however they
use all of the data instead of the OOB
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GBM: sample code

gbm(Ytrain~.,data=Xtrain,

distribution="bernoulli",

n.trees=500,

shrinkage=0.01,

interaction.depth=3,

bag.fraction = 0.5,

n.minobsinnode = 10,

cv.folds = 3,

keep.data=TRUE,

verbose=TRUE,

n.cores=2)
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GBM: Figures
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Distributed computing hierarchy

Server

Node

CPU/Processor

Core

Hyperthreading

Example: A server might have

• 64 nodes

• 2 processors per node

• 16 cores per processor

• hyper threading

The goal is to somehow allocate a
job so that these resources are used
efficiently

Jobs are composed of threads, which
are specific computations
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Hyperthreading

Developed by Intel, Hypertheading allows for each core to
pretend to be two cores

Core

Hyperthreading

Virtual Core Virtual Core

This works by trading off computation and read-time for each
core
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Boosting: Learning slow

It is best to set the learning rate at a small number.

This is usually calibrated by the computational demands of the
problem.

A good strategy is to pick a number, say .001

Run with n.trees relatively small and see how long it takes

Keep adding trees with gbm.more. If this is taking too long,
increase the learning rate
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XGBoost
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XGboost

This stands for:

Extreme Gradient Boosting

It has some advances related to gbm
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XGboost: Advances

• Sparse matrices: Can use sparse matrices as inputs
(In fact, it has its own matrix-like data structure that is recommended)

• OpenMP: Incorporates OpenMP on Windows/Linux
(OpenMP is a message passing parallelization paradigm for shared memory

parallel programming)

• Loss functions: You can specifiy your own
loss/evaluation functions
(You need to use xgb.train for this)
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