Support vector machines and KERNELIZATION
 -Statistical Learning and Data Mining-

Kernel methods

Intuition: Many methods have linear decision boundaries
We know that sometimes this isn't sufficient to represent data

Example: Sometimes we need to included a polynomial effect or a log transform in multiple regression

Sometimes, a linear boundary, but in a different space makes all the difference..

OPTIMAL SEPARATING HYPERPLANE

Reminder: The Wolfe dual, which gets maximized over α, produces the optimal separating hyperplane

$$
\text { Wolf dual }=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} \alpha_{i} \alpha_{k} Y_{i} Y_{k} X_{i}^{\top} X_{k}
$$

(this is all subject to $\alpha_{i} \geq 0$)
A similar result holds after the introduction of slack variables
(e.g. support vector classifiers)

Important: The features only enter via

$$
X^{\top} X^{\prime}=\left\langle X, X^{\prime}\right\rangle
$$

(KERNEL) RIDGE REGRESSION

Reminder: Suppose we want to predict at X, then

$$
\hat{f}(X)=X^{\top} \hat{\beta}_{\text {ridge }, \lambda}=X^{\top} \mathbb{X}^{\top}\left(\mathbb{X}^{\top} \mathbb{X}^{\top}+\lambda /\right)^{-1} Y
$$

Also,

$$
\mathbb{X}^{\top}=\left[\begin{array}{cccc}
\left\langle X_{1}, X_{1}\right\rangle & \left\langle X_{1}, X_{2}\right\rangle & \cdots & \left\langle X_{1}, X_{n}\right\rangle \\
\vdots & & \\
\left\langle X_{n}, X_{1}\right\rangle & \left\langle X_{n}, X_{2}\right\rangle & \cdots & \left\langle X_{n}, X_{n}\right\rangle
\end{array}\right]
$$

and

$$
X^{\top} \mathbb{X}^{\top}=\left[\left\langle X, X_{1}\right\rangle,\left\langle X, X_{2}\right\rangle, \cdots,\left\langle X, X_{n}\right\rangle\right]
$$

Again, we have the covariates enter only as

$$
\left\langle X, X^{\prime}\right\rangle=X^{\top} X^{\prime}
$$

Logistic REGRESSION: TRANSFORMATIONS

 Let's look at the default data in "Introduction to Statistical Learning"In particular, we will look at default status as a function of balance and income

Logistic REGRESSION: TRANSFORMATIONS

```
out.glm = glm(default~balance + income,family='binomial')
```


Logistic REGRESSION: TRANSFORMATIONS

out.glm = glm(default~balance + income +
I(income^2),family='binomial')

Conclusion: A Linear rule in a transformed space can have a nonlinear boundary in the original features

Logistic REGRESSION: TRANSFORMATIONS

REminder: The logistic model: untransformed

$$
\begin{aligned}
\operatorname{logit}(\mathbb{P}(Y=1 \mid X)) & =\beta_{0}+\beta^{\top} X \\
& =\beta_{0}+\beta_{1} \text { balance }+\beta_{2} \text { income }
\end{aligned}
$$

The decision boundary is the hyperplane $\left\{X: \beta_{0}+\beta^{\top} X=0\right\}$
This is linear in the feature space

Logistic REGRESSION: TRANSFORMATIONS

Adding the polynomial transformation $\Phi(X)=\left(x_{1}, x_{2}, x_{2}^{2}\right)$:
$\operatorname{logit}(\mathbb{P}(Y=1 \mid X))=\beta_{0}+\beta^{\top} \Phi(X)$ $=\beta_{0}+\beta_{1}$ balance $+\beta_{2}$ income $+\beta_{3}$ income 2
Decision boundary is still a hyperplane $\left\{X: \beta_{0}+\beta^{\top} \Phi(X)=0\right\}$
This is nonlinear in the feature space!

Logistic REGRESSION: TRANSFORMATIONS

Of course, as we include more transformations,

- We need to choose the transformations manually
- Computations can become difficult if we aren't careful (Example: Solving the least squares problem takes something like $n p^{2}$ computations)
- We need to regularize to prevent overfitting

Can we form them in an automated fashion?

Kernel Methods

Nonnegative definite matrices

Let $A \in \mathbb{R}^{p \times p}$ be a symmetric, nonnegative definite matrix:

$$
z^{\top} A z \geq 0 \text { for all } z \text { and } A^{\top}=A
$$

Then, A has an eigenvalue expansion

$$
A=U D U^{\top}=\sum_{j=1}^{p} d_{j} u_{j} u_{j}^{\top}
$$

where $d_{j} \geq 0$
Observation: Each such A, generates a new inner product

$$
\begin{gathered}
\left\langle z, z^{\prime}\right\rangle=z^{\top} z^{\prime}=z^{\top} \underbrace{1}_{\text {Identity }} z^{\prime} \\
\left\langle z, z^{\prime}\right\rangle_{A}=z^{\top} A z^{\prime}
\end{gathered}
$$

(If we enforce A to be positive definite, then $\langle z, z\rangle_{A}=\|z\|_{A}^{2}$ is a norm)

Nonnegative definite matrices

Suppose A_{i}^{j} is the (i, j) entry in A, and A_{i} is the $i^{\text {th }}$ row

$$
A z=\left[\begin{array}{c}
A_{1}^{\top} \\
\vdots \\
A_{p}^{\top}
\end{array}\right] z=\left[\begin{array}{c}
A_{1}^{\top} z \\
\vdots \\
A_{p}^{\top} z
\end{array}\right]
$$

Note: Multiplication by A is really taking inner products with its rows.

Hence, A_{i} is called the (multiplication) kernel of matrix A

Kernel methods

$k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a symmetric, nonnegative definite kernel

Write the eigenvalue expansion of k as

$$
k\left(X, X^{\prime}\right)=\sum_{j=1}^{\infty} \theta_{j} \phi_{j}(X) \phi_{j}\left(X^{\prime}\right)
$$

with

- $\theta_{j} \geq 0 \quad$ (nonnegative definite)
- $\left\|\left(\theta_{j}\right)_{j=1}^{\infty}\right\|_{2}=\sum_{j=1}^{\infty} \theta_{j}^{2}<\infty$
- The ϕ_{j} are orthogonal eigenfunctions: $\int \phi_{j} \phi_{j^{\prime}}=\delta_{j, j^{\prime}}$
(This is called Mercer's theorem, and such a k is called a Mercer kernel)

Kernel: Example

Back to polynomial terms/interactions:
Form

$$
k_{d}\left(X, X^{\prime}\right)=\left(X^{\top} X^{\prime}+1\right)^{d}
$$

k_{d} has $M=\binom{p+d}{d}$ eigenfunctions
These span the space of polynomials in \mathbb{R}^{p} with degree d

Kernel: Example

Example: Let $d=p=2 \Rightarrow M=6$ and

$$
\begin{aligned}
k(u, v) & =1+2 u_{1} v_{1}+2 u_{2} v_{2}+u_{1}^{2} v_{1}^{2}+u_{2}^{2} v_{2}^{2}+2 u_{1} u_{2} v_{1} v_{2} \\
& =\sum_{k=1}^{M} \Phi_{k}(u) \Phi_{k}(v) \\
& =\Phi(u)^{\top} \Phi(v) \\
& =\langle\Phi(u), \Phi(v)\rangle
\end{aligned}
$$

where

$$
\Phi(v)^{\top}=\left(1, \sqrt{2} v_{1}, \sqrt{2} v_{2}, v_{1}^{2}, v_{2}^{2}, \sqrt{2} v_{1} v_{2}\right)
$$

Important: These equalities are everything that makes kernelization work!

Kernel: Conclusion

Let's recap:

$$
\begin{aligned}
k(u, v) & =1+2 u_{1} v_{1}+2 u_{2} v_{2}+u_{1}^{2} v_{1}^{2}+u_{2}^{2} v_{2}^{2}+2 u_{1} u_{2} v_{1} v_{2} \\
& =\langle\Phi(u), \Phi(v)\rangle
\end{aligned}
$$

- Some methods only involve features via inner products $X^{\top} X^{\prime}=\left\langle X, X^{\prime}\right\rangle$
(We've explicitly seen two: ridge regression and support vector classifiers)
- If we make transformations of X to $\Phi(X)$, the procedure depends on $\Phi(X)^{\top} \Phi\left(X^{\prime}\right)=\left\langle\Phi(X), \Phi\left(X^{\prime}\right)\right\rangle$
- Crucial: We can compute this inner product via the kernel:

$$
k\left(X, X^{\prime}\right)=\left\langle\Phi(X), \Phi\left(X^{\prime}\right)\right\rangle
$$

Kernel: Conclusion

Instead of creating a very high dimensional object via transformations, choose a kernel k

Now, the only thing left to do is form the outer product of kernel evaluations

$$
\mathbb{K}=\left[k\left(X_{i}, X_{i^{\prime}}\right)\right]_{1 \leq i, i^{\prime} \leq n}
$$

```
x = c(1,2,3)# n = 3
k = function(x,y){ return(x + y + x*y)}
> outer(x,x,k)
\begin{tabular}{lrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & 3 & 5 & 7 \\
{\([2]\),} & 5 & 8 & 11 \\
{\([3]\),} & 7 & 11 & 15
\end{tabular}
```

(Kernel) SVMs

Kernel SVM

Recall:

$$
\frac{1}{2}\|\beta\|_{2}^{2}-\sum_{i=1}^{n} \alpha_{i}\left[Y_{i}\left(X_{i}^{\top} \beta+\beta_{0}\right)-1\right]
$$

Derivatives with respect to β and β_{0} imply:

- $\beta=\sum_{i=1}^{n} \alpha_{i} Y_{i} X_{i}$
- $0=\sum_{i=1}^{n} \alpha_{i} Y_{i}$

Write the solution function

$$
h(X)=\beta_{0}+\beta^{\top} X=\beta_{0}+\sum_{i=1}^{n} \alpha_{i} Y_{i} X_{i}^{\top} X
$$

Kernelize the support vector classifier \Rightarrow support vector machine (SVM):

$$
h(X)=\beta_{0}+\sum_{i=1}^{n} \alpha_{i} Y_{i} k\left(X_{i}, X\right)
$$

General kernel machines

After specifying a kernel function, it can be shown that many procedures have a solution of the form

$$
\hat{f}(X)=\sum_{i=1}^{n} \gamma_{i} k\left(X, X_{i}\right)
$$

For some $\gamma_{1}, \ldots, \gamma_{n}$
Also, this is equivalent to performing the method in the space given by the eigenfunctions of k

$$
k(u, v)=\sum_{j=1}^{\infty} \theta_{j} \phi_{j}(u) \phi_{j}(v)
$$

Also, (the) feature map is

$$
\Phi=\left[\phi_{1}, \ldots, \phi_{p}, \ldots\right]
$$

Kernel SVMs

Hence (and luckily) specifying Φ itself unnecessary,
(Luckily, as many kernels have difficult to compute eigenfunctions)
We need only define the kernel that is symmetric, positive definite

Some common choices for SVMs:

- Polynomial: $k(x, y)=\left(1+x^{\top} y\right)^{d}$
- RADIAL BASIS: $k(x, y)=e^{-\tau\|x-y\|_{b}^{b}}$
(For example, $b=2$ and $\tau=1 /\left(2 \sigma^{2}\right)$ is (proportional to) the Gaussian density)

Kernel SVMs: Summary

Reminder: the solution form for SVM is

$$
\beta=\sum_{i=1}^{n} \alpha_{i} Y_{i} X_{i}
$$

Kernelized, this is

$$
\beta=\sum_{i=1}^{n} \alpha_{i} Y_{i} \Phi\left(X_{i}\right)
$$

Therefore, the induced hyperplane is:

$$
\begin{aligned}
h(X)=\Phi(X)^{\top} \beta+\beta_{0} & =\sum_{i=1}^{n} \alpha_{i} Y_{i}\left\langle\Phi(X), \Phi\left(X_{i}\right)\right\rangle+\beta_{0} \\
& =\sum_{i=1}^{n} \alpha_{i} Y_{i} k\left(X, X_{i}\right)+\beta_{0}
\end{aligned}
$$

The final classification is still $\hat{g}(X)=\operatorname{sgn}(\hat{h}(X))$

SVMs via penalization

SVMS VIA PENALIZATION

Note: SVMs can be derived from penalized loss methods
The support vector classifier optimization problem:

$$
\begin{gathered}
\min _{\beta_{0}, \beta} \frac{1}{2}\|\beta\|_{2}^{2}+\lambda \sum \xi_{i} \text { subject to } \\
Y_{i} h\left(X_{i}\right) \geq 1-\xi_{i}, \xi_{i} \geq 0, \text { for each } i
\end{gathered}
$$

Writing $h(X)=\Phi(X)^{\top} \beta+\beta_{0}$, consider

$$
\min _{\beta, \beta_{0}} \sum_{i=1}^{n}\left[1-Y_{i} h\left(X_{i}\right)\right]_{+}+\tau\|\beta\|_{2}^{2}
$$

These optimization problems are the same! (With the relation: $2 \lambda=1 / \tau$)

SVMS VIA PENALIZATION

The loss part is the hinge loss function

$$
\ell(X, Y)=[1-Y h(X)]_{+}
$$

The hinge loss approximates the zero-one loss function underlying classification

It has one major advantage, however: convexity

Surrogate losses: Convex relaxation

Looking at

$$
\min _{\beta, \beta_{0}} \sum_{i=1}^{n}\left[1-Y_{i} h\left(X_{i}\right)\right]_{+}+\tau\|\beta\|_{2}^{2}
$$

It is tempting to minimize (analogous to linear regression)

$$
\sum_{i=1}^{n} \mathbf{1}\left(Y_{i} \neq \hat{g}\left(X_{i}\right)\right)+\tau\|\beta\|_{2}^{2}
$$

However, this is nonconvex (in $u=h(X) Y$)

A common trick is to approximate the nonconvex objective with a convex one
(This is known as convex relaxation with a surrogate loss function)

Surrogate losses

IDEA: We can use a surrogate loss that mimics this function while still being convex

It turns out we have already done that! (twice)

- Hinge: $[1-Y h(X)]_{+}$
- Logistic: $\log \left(1+e^{-Y h(X)}\right)$

Surrogate losses

SVMs in PRACtice

General functions: The basic SVM functions are in the C ++ library libsvm
R PACKAGE: The R package e 1071 calls libsvm
Path ALGORITHM: svmpath
For a nice comparison of these approaches, see "Support vector machines in R"
(http://www.jstatsoft.org/v15/i09/paper)

SVM EXAMPLE

$$
\begin{aligned}
& \text { tune.out }=\text { tune (svm, } \mathrm{Y}^{\sim} ., \text { data=dat,kernel="linear", } \\
& \text { ranges=list }(\operatorname{cost}=c(0.001,0.01,0.1,1,5,10,100)))
\end{aligned}
$$

SVM classification plot

SVM EXAMPLE

```
tune.out = tune(svm,Y~.,data=dat,kernel="radial",
    gamma=c(1,2),
    ranges=list (cost=c(0.001, 0.01, 0.1, 1,5,10,100)))
```


SVM EXAMPLE

```
tune.out = tune(svm,Y~.,data=dat,kernel="polynomial",
    degree=c(3,5,10),
    ranges=list (cost=c(0.001, 0.01, 0.1, 1,5,10,100)))
```

 SVM classification plot

SVM EXAMPLE

SVM classification plot

Multiclass classification

Multiclass SVMs

Sometimes, it becomes necessary to do multiclass classification
There are two main approaches:

- One-versus-one
- One-vesus-all

Multiclass SVMs: One-VERSus-one

Here, for G possible classes, we run $G(G-1) / 2$ possible pairwise classifications

For a given test point X, we find $\hat{g}_{k}(X)$ for $k=1, \ldots, G(G-1) / 2$ fits

The result is a vector $\hat{G} \in \mathbb{R}^{G}$ with the total number of times X was assigned to each class

We report $\hat{g}(X)=\arg \max _{g} \hat{G}$
This approach uses all the class information, but can be slow

Multiclass SVMs: One-vesus-all

Here, we fit only G SVMs by respectively collapsing over all size $G-1$ subsets of $\{1, \ldots, G\}$
(This is compared with $G(G-1) / 2$ comparisons for one-versus-one) Take all
$\hat{h}_{g}(X)$ for $g=1, \ldots, G$, where class g is coded 1 and "the rest" is coded -1

Assign $\hat{g}(X)=\arg \max _{g} \hat{h}_{g}(X)$
(Note that these strategies can be applied to any classifier)

