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K-means

1. Select a number of clusters K .
2. Let C1, . . . ,CK partition {1, 2, 3, . . . , n} such that

I All observations belong to some set Cj .
I No observation belongs to more than one set.

3. K-means attempts to form these sets by making within-cluster
variation, W (Ck), as small as possible.

min
C1,...,CK

K∑
k=1

W (Ck).

4. To Define W , we need a concept of distance. By far the most
common is Euclidean

W (Ck) =
1

|Ck |
∑

i ,i ′∈Ck

||Xi − Xi ′ ||22.

That is, the average (Euclidean) distance between all cluster
members.
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K-means

It turns out

min
C1,...,CK

K∑
k=1

W (Ck). (1)

is too hard of a problem to solve computationally (Kn partitions!).

So, we make a greedy approximation:

1. Randomly assign observations to the K clusters

2. Iterate until the cluster assignments stop changing:
I For each of K clusters, compute the centroid, which is the

p-length vector of the means in that cluster.
I Assign each observation to the cluster whose centroid is closest

(in Euclidean distance).

This procedure is guaranteed to decrease (1) at each step.
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K-means: A Summary

To fit K-means, you need to

1. Pick K (inherent in the method)

2. Convince yourself you have found a good solution (due to the
randomized approach to the algorithm).

It turns out that 1. is difficult to do in a principled way. We will
discuss this next

For 2., a commonly used approach is to run K-means many times
with different starting points. Pick the solution that has the
smallest value for

min
C1,...,CK

K∑
k=1

W (Ck)
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Choosing K
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Choosing the Number of Clusters

Why is it important?

• It might make a big difference (concluding there are K = 2
cancer sub-types versus K = 3).

• One of the major goals of statistical learning is automatic
inference. A good way of choosing K is certainly a part of
this.
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Reminder: What does K -means do?

Given a number of clusters K , we (approximately) minimize:

K∑
k=1

W (Ck) =
K∑

k=1

1

|Ck |
∑

i ,i ′∈Ck

||Xi − Xi ′ ||22.

We can rewrite this in terms of the centroids as

W (K ) =
K∑

k=1

∑
i∈Ck

||Xi − X k ||22,
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Minimizing W in K
Of course, a lower value of W is better. Why not minimize W ?

plotW = rep(0,49)

for(K in 1:49){

plotW[K] = kmeans(x,centers=K,nstart=20)$tot.withinss

}
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Minimizing W in K
Of course, a lower value of W is better. Why not minimize W ?

A look at the cluster solution
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Between-cluster variation

Within-cluster variation measures how tightly grouped the clusters
are. As we increase K , this will always decrease.

What we are missing is between-cluster variation, ie: how spread
apart the groups are

B =
K∑

k=1

|Ck |||X k − X ||22,

where |Ck | is the number of points in Ck , and X is the grand mean
of all observations:

X =
1

n

n∑
i=1

Xi .
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Between-cluster variation: Example
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Can we just maximize B?
Sadly, no. Just like W can be made arbitrarily small, B will always
be increasing with increasing K .
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CH index

Ideally, we would like our cluster assignment to simultaneously
have small W and large B.

This is the idea behind CH index. For clustering assignments
coming from K clusters, we record CH score:

CH(K ) =
B(K )/(K − 1)

W (K )/(n − K )

To choose K , pick some maximum number of clusters to be
considered (Kmax = 20, for example) and choose the value of K
that

K̂ = arg max
K∈{2,...,Kmax}

CH(K ).

Note: CH is undefined for K = 1.

(Calinski, Harabasz (1974))
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CH index

ch.index = function(x,kmax,iter.max=100,nstart=10,

algorithm="Lloyd")

{

ch = numeric(length=kmax-1)

n = nrow(x)

for (k in 2:kmax) {

a = kmeans(x,k,iter.max=iter.max,nstart=nstart,

algorithm=algorithm)

w = a$tot.withinss

b = a$betweenss

ch[k-1] = (b/(k-1))/(w/(n-k))

}

return(list(k=2:kmax,ch=ch))

}
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A simulated example

x = matrix(rnorm(50*2),ncol=2)

x[1:25,1] = x[1:25,1] + 3

x[1:25,2] = x[1:25,2] -4

We want to cluster this data set using K-means with K chosen via
CH index.
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CH plot
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Corresponding solution
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Hierarchical clustering

18



From K -means to hierarchical clustering

Recall two properties of K -means clustering

1. It fits exactly K clusters.

2. Final clustering assignments depend on the chosen initial
cluster centers.

Alternatively, we can use hierarchical clustering. This has the
advantage that

1. No need to choose the number of clusters before hand.

2. There is no random component (nor choice of starting point).
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From K -means to hierarchical clustering

There is a catch: we need to choose a way to measure the distance
between clusters, called the linkage.

Given the linkage, hierarchical clustering produces a sequence of
clustering assignments.

At one end, all points are in their own cluster.

At the other, all points are in one cluster.

In the middle, there are nontrivial solutions.
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Agglomerative example

Given these data points, an agglomerative algorithm might decide
on the following clustering sequence:
(Important: Different choices of linkage would result in different solutions)
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We can also represent the sequence of clustering assignments as a
dendrogram
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Note that cutting the dendrogram horizontally partitions the data
points into clusters
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Back to the example
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For instance, the linkage distance between the cluster {4, 7} and
the cluster {1, 2, 6} is about .65.
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Linkages

Notation: Define X1, . . . ,Xn to be the data

Let the dissimiliarities be dij between each pair Xi ,Xj

At any level, clustering assignments can be expressed by sets
G = {i1, i2, . . . , ir}. given the indices of points in this group.
Define |G | to be the size of G .

Linkage: The function d(G ,H) that takes two groups G ,H and
returns the linkage distance between them.

Agglomerative clustering, given the linkage:

• Start with each point in its own group

• Until there is only one cluster, repeatedly merge the two
groups G ,H that minimize d(G ,H).

24



Single linkage
In single linkage (a.k.a nearest-neighbor linkage), the linkage
distance between G ,H is the smallest dissimilarity between two
points in different groups:

dsingle(G ,H) = min
i∈G , j∈H

dij

Example: There are two clusters
G and H (red and blue).
The single linkage score
(i.e. dsingle(G ,H))

is the dissimilarity between the
closest pair
(length of black line segment)
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Single linkage example
Here n = 60, Xi ∈ R2, dij = ||Xi − Xj ||2. Cutting the tree at
h = 0.8 gives the cluster assignments marked by colors
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Cut interpretation: For each point Xi , there is another point Xj in
the same cluster with dij ≤ 0.8 (assuming more than 1 point in
cluster). Also, no points in different clusters are closer than 0.8.
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Complete linkage
In complete linkage (i.e. farthest-neighbor linkage), linkage
distance between G ,H is the largest dissimilarity between two
points in different clusters:

dcomplete(G ,H) = max
i∈G , j∈H

dij .

Example: There are two clusters
G and H (red and blue).
The complete linkage score
(i.e. dcomplete(G ,H))

is the dissimilarity between the
farthest pair
(length of black line segment)
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Complete linkage example

Same data as before. Cutting the tree at h = 3.5 gives the
clustering assignment
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same cluster has dij ≤ 3.5.
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Average linkage
In average linkage, the linkage distance between G ,H is the
average dissimilarity over all points in different clusters:

daverage(G ,H) =
1

|G | · |H|
∑

i∈G , j∈H
dij .

Example: There are two clusters
G and H (red and blue).
The average linkage score
(i.e. daverage(G ,H))

is the average dissimilarity between
all points in different clusters
(average of lengths of colored line segments)
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Average linkage example

Same data as before. Cutting the tree at h = 1.75 gives the
clustering assignment
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Common properties

Single, complete, and average linkage share the following:

• They all operate on the dissimilarities dij . This means that the
points we are clustering can be quite general (number of
mutations on a genome, polygons, faces, whatever).

• Running agglomerative clustering with any of these linkages
produces a dendrogram with no inversions.

No inversions means that the linkage distance between merged
clusters only increases as we run the algorithm.

In other words, we can draw a proper dendrogram, where the
height of a parent is always higher than the height of either
daughter.
(We’ll return to this again shortly)
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Shortcomings of single and complete linkage

Single and complete linkage have practical problems:

Single linkage: Often suffers from chaining, that is,
we only need a single pair of
points to be close to merge two clusters.
Therefore, clusters can be too spread out
and not compact enough.

Complete linkage: Often suffers from crowding, that is,
a point can be closer to points in
other clusters than to points in its own
cluster. Therefore, the clusters are
compact, but not far enough apart.

Average linkage tries to strike a balance between these two.
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Example of chaining and crowding
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Shortcomings of average linkage

Average linkage isn’t perfect.

• It isn’t clear what properties the resulting clusters have when
we cut an average linkage tree.

• Results of average linkage clustering can change with a
monotone increasing transformation of the dissimilarities (that
is, if we changed the distance, but maintained the ranking of
the distances, the cluster solution could change).

Neither of these problems afflict single or complete linkage.
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Example of monotone increasing problem
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Hierarchical agglomerative clustering in R

The function hclust in base R performs the necessary
computations. E.g.

Delta = dist(x)

out.average = hclust(Delta,method=’average’)

plot(out.average)
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Recap

Hierarchical agglomerative clustering: Start with all
data points in their own groups, and repeatedly merge groups,
based on linkage function. Stop when points are in one group (this
is agglomerative; there is also divisive)

This produces a sequence of clustering assignments, visualized by a
dendrogram (i.e., a tree). Each node in the tree represents a
group, and its height is proportional to the linkage distance of its
daughters

Three most common linkage functions: single, complete, average
linkage. Single linkage measures the least dissimilar pair between
groups, complete linkage measures the most dissimilar pair,
average linkage measures the average dissimilarity over all pairs

Each linkage has its strengths and weaknesses
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Careful Example
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Distance matrix (∆)

1 2 3 4 5 6 7

1 0.00 0.37 0.49 0.61 0.96 1.24 1.42

2 0.37 0.00 0.12 0.64 0.98 1.44 1.24

3 0.49 0.12 0.00 0.65 0.97 1.48 1.15

4 0.61 0.64 0.65 0.00 0.36 0.85 0.90

5 0.96 0.98 0.97 0.36 0.00 0.71 0.72

6 1.24 1.44 1.48 0.85 0.71 0.00 1.39

7 1.42 1.24 1.15 0.90 0.72 1.39 0.00

(All Merging {1} and {2, 3})
Single: 0.37
Complete: 0.49
Average: (0.37 + 0.49)/2 = 0.43

(Next Agglomeration)
Single: Merging {4, 5} & {1, 2, 3}

0.61
Complete: Merging {4, 5} & {6}

0.85
Average: Merging {4, 5} & {6}

(0.85+0.71)/2 = 0.78
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Another linkage
Centroid linkage is a commonly used and relatively new approach.
Assume

• Xi ∈ Rp

• dij = ||Xi − Xj ||22

Let XG and XH denote group averages for G ,H. Then

dcentroid = ||XG − XH ||22

Example: There are two clusters
(red and blue). The centroid
linkage score (dcentroid(G ,H)) is
the distance2 between the
centroids (black line segment).
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Centroid linkage

Centroid linkage is

• ... quite intuitive

• ... widely used

• ... nicely analogous to K -means.

• ... very related to average linkage (and much, much faster)

However, it has a very unsavory feature: inversions.

An inversion is when an agglomeration doesn’t reduce the linkage
distance.
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Centroid linkage example

Same data as before. We can’t look at cutting the tree, but we
can still look at a 3 cluster solution.
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Cut interpretation: Even if there are no inversions, there still is no
cut interpretation.
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Careful Example: Steps 1,2,3
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hclust (*, "centroid")
Delta

H
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Distance matrix (∆)

1 2 3 4 5 6 7

1 0.00 0.40 0.35 1.62 1.20 2.16 3.67

2 0.40 0.00 0.34 1.96 0.37 2.54 3.66

3 0.35 0.34 0.00 0.68 0.42 1.05 1.94

4 1.62 1.96 0.68 0.00 1.45 0.04 0.46

5 1.20 0.37 0.42 1.45 0.00 1.86 2.35

6 2.16 2.54 1.05 0.04 1.86 0.00 0.27

7 3.67 3.66 1.94 0.46 2.35 0.27 0.00

(This is squared Euclidean distance)

Centroid(4,6) = (1.68,0.76)
Centroid(2,3) = (0.58,1.25)

42



Careful Example: Step 4
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Distance matrix (∆)

1 2 3 4 5 6 7

1 0.00 0.40 0.35 1.62 1.20 2.16 3.67

2 0.40 0.00 0.34 1.96 0.37 2.54 3.66

3 0.35 0.34 0.00 0.68 0.42 1.05 1.94

4 1.62 1.96 0.68 0.00 1.45 0.04 0.46

5 1.20 0.37 0.42 1.45 0.00 1.86 2.35

6 2.16 2.54 1.05 0.04 1.86 0.00 0.27

7 3.67 3.66 1.94 0.46 2.35 0.27 0.00

(This is squared Euclidean distance)

Which one gets merged?

({1} and {2, 3})

method = ’centroid’

out = hclust(Delta,method=method)

rect.hclust(out,k=5,

border=c(’white’,’red’,’white’,’white’,’blue’))
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Careful Example: Step 4
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(This is squared Euclidean distance)
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method = ’centroid’

out = hclust(Delta,method=method)

rect.hclust(out,k=5,

border=c(’white’,’red’,’white’,’white’,’blue’))

43



Linkages summary

No inversions?

Unchanged
w/ monotone
transforma-
tion?

Cut
interpre-
tation?

Notes

Single X X X chaining

Complete X X X crowding

Average X X X

Centroid X X X inversions

Final notes:

• None of this helps determine what is the best linkage
• Use the linkage that seems the most appropriate for the types

of clusters you want to get
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Designing a clever radio system

We have a lot of songs and dissimilarity scores between them (dij)

We want to build a clever radio system that takes a song specified
by the user and produces a song of the “same” type

We ask the user how “risky” he or she wants to be

How can we use hierarchical clustering and with what linkage?
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Linkages summary: Cut interpretations

Suppose we cut the tree at height h = 1.

Single For each point Xi , there is another point Xj in the
same cluster with dij ≤ 1 (assuming more than
1 point in cluster). Also, no points in different clusters
are closer than 1.

Complete For each point Xi , every other point Xj in the same
cluster has dij ≤ 1.
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Data analysis example

Diffuse large B-cell lymphoma (DLBCL) is the most common type
of non-Hodgkin’s lymphoma

It is clinically heterogeneous:

• 40% of patients respond well

• 60% of patients succumb to the disease

The researchers propose that this difference is due to unrecognized
molecular heterogeneity in the tumors

We examine the extent to which genomic-scale gene expression
profiling can further the understanding of B-cell malignancies.
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Data analysis example
Here, we have gene expression data at 2,000 genes for 62 cancer
cells.

There are 3 cancer diagnoses: FL, CLL, DLBCL. Each corresponds
to a type of malignant lymphoma.

We want to use hierarchical clustering to understand this data set
better.

load(’../data/alizadeh.RData’)

genesT = alizadeh$x

genes = t(genesT)

Yfull = alizadeh$type

Y = as.vector(Yfull)

Y[Yfull == "DLBCL-A"] = ’DLBCL’

Y[Yfull == "DLBCL-G"] = ’DLBCL’

Y = as.factor(Y)

dist.mat = dist(genes)
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PCA plot
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Two clear groups for
FL and CLL

DLBCL somewhat
appears to be 1 group,
but it is much more
diffuse.
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PCA plot
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Here are the two
sub-types identified by
the researchers

Let’s look at their
results further.
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Four hierarchical cluster solutions
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Complete linkage: A closer look
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out.com = hclust(dist.mat,

method=’complete’)

plot(out.com,xlab=’’,

main=’’,labels=Y)

rect.hclust(out.com,k=12)

out.cut = cutree(out.com,

k=12)

Notice that FL and CLL are
distinctly grouped, while there
are many clusters inside the
DLBCL type.
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