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Normal means
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A simpler model

Suppose that Y ∼ (µ, 1) and let

Lq(µ) = 2q−2(Y − µ)2 + λ|µ|q

and
µ̂q = argmin

µ
Lq(µ)

Then,

• q = 0 ⇒ µ̂0 = Y

• q = 2 ⇒ µ̂2 = Y /(λ + 1)

• q = 1?
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Subdifferential

To theoretically solve this optimization problem, we use the
notion of a subderivative.

We call c a subderivative of f at X0 provided

f (X )− f (X0) ≥ c(X − X0)

A convex function can be optimized by setting the
subderivative = 0

The subdifferential ∂f |X0 is the set of subderivatives.

X0 minimizes f if and only if 0 ∈ ∂f |X0 .
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Subdifferential in action

For ρ(µ) = |µ|,

∂ρ|µ =


{−1} if µ < 0

[−1, 1] if µ = 0

{1} if µ > 0

Therefore

∂L1|µ =


{µ− Y − λ} if µ < 0

{µ− Y + λz : −1 ≤ z ≤ 1} if µ = 0

{µ− Y + λ} if µ > 0
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`1 and soft-thresholding

µ̂1 minimizes L1 if and only if 0 ∈ ∂L1|µ̂1

So..

µ̂1 =


Y + λ if Y < −λ
0 if − λ ≤ Y ≤ λ

Y − λ if Y > λ

This can be written

µ̂1 = sgn(Y )(|Y | − λ)+

This is known as soft thresholding
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Orthogonal design: Example
Suppose now that (p ≤ n)

Y = Xβ + ε,

where X>X/n = I .

Let’s solve

β̂λ = argmin
β

1

2n
||Xβ − Y ||22 + λ||β||1

1

2n
||Xβ − Y ||22 ∝

β>X>Xβ
2n

− β>X>Y
n

=
β>β

2
− β>β̂LS

Now,

1

2n
||Xβ − Y ||22 + λ||β||1 =

p∑
j=1

(
β2
j /2− βj β̂LS ,j + λ|βj |

)
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Orthogonal design

We can minimize this component wise:

L(β) = β2/2− ββ̂LS + λ|β| (dropping the j)

This can be optimized using subdifferentials in exactly the
same way
(I’ll leave this as an Exercise)

This results in soft-thresholding the least squares solution.

This rationale can be extended to make the lasso gradient
(coordinate) descent explicit
(And is the backbone of glmnet)
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Normal means

Note that the orthogonal design linear model is an example of
a normal means problem:

Let ε ∼ N(0, I ), then

Y = Xβ + ε⇔ W
D
= β +

1√
n
ε

This turns out to be an even more powerful idea..
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Normal means
Let

• H be a real, separable Hilbert space with inner product
〈·, ·〉
• (φi) be an orthonormal basis for H

Then we can imagine a signal h being observed with a white
noise Gaussian process

Y (t) = h(t) + ε(t)

(Technically, this doesn’t exist. Rather we can observe functionals

Y (t)dt = h(t)dt + dε(t))

We make observations of this signal via inner products:

yi = 〈Y , φi〉 = 〈h + ε, φi〉 = hi + εi

As linear operations of Gaussians are Gaussians, εi ∼ N(0, 1)
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Concentration inequalities and
empirical processes
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High level overview

The core of modern machine learning theory rests with the
following structure:

1. Concentration inequalities: Show that a random
quantity is close to its mean with high probability

1.1 Hoeffding’s
1.2 McDiarmid’s
1.3 Bernstein’s

2. Uniform bounds: Guarantee that a set of random
quantities are all simultaneously close to their means with
high probability

2.1 VC-dimension
2.2 Rademacher complexity
2.3 Covering/bracketing numbers
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Motivation

Goal: (concentration inequalities) + (complexity measure) =
uniform coverage of a stochastic process (i.e. supt∈T Xt).

When would this be useful?

Suppose we have data D and a loss function `f and we wish to
find a function f̂ that can predict a new Y from an X

Form the excess risk

E(f̂ ) = P`f̂ − inf
f ∈F

P`f

and f̂ = argminf ∈F P̂`f
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Recall

P̂ = n−1
∑n

i=1 δXi
is the empirical measure.

This can be interpreted in two ways:

• Expectation: Let f be a function, then we write

P̂f =

∫
f d P̂ =

1

n

n∑
i=1

f (Xi)

• Measure: Let C be a (measurable) set, then we write

P̂C =

∫
1Cd P̂ =

1

n
|{i : Xi ∈ C}|

(These notions are used interchangeably, and motivate using P for both probability

and expectation)
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Back to motivation
Apply the 2− ε technique:

E(f̂ ) = P`f̂ − P̂`f̂ + P̂`f̂ − inf
f ∈F

P`f

≤ P`f̂ − P̂`f̂ + P̂`f∗ − P`f∗
≤ 2 sup

f ∈F
|P`f − P̂`f |

Where f∗ is such that P`f∗ = inf f ∈F P`f

So, fixing an ε > 0

P(E(f̂ ) > 2ε) ≤ P(| sup
f ∈F
|(P̂− P)`f | > ε)

≤ E supf ∈F |(P̂− P)`f |
ε
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Motivation

Conclusion:

P(E(f̂ ) > 2ε) ≤ ε−1E sup
f ∈F
|(P̂− P)`f | = ε−1E

∣∣∣∣∣∣P̂− P
∣∣∣∣∣∣
F

We can bound the excess risk of an estimator f̂ by bounding
the supremum of the difference between the empirical measure
and true measure

Note that:

• Using the previous notation, Xt = (P̂− P)`f , and T = F
(Sometimes the index set is considered L = {`f : f ∈ F})

• The stochastic process G =
√
n(P̂− P) is the empirical

process
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Empirical process

The stochastic process (P̂− P)`f is zero mean and hence we
know by the SLLN that for all f ∈ F

(P̂− P)`f → 0 a.s

(Assuming P`f exists, of course)

However, this doesn’t give us uniform control
(i.e: this doesn’t imply that the supremum goes to zero)

We call an index set F a Glivenko-Cantelli class if

sup
f ∈F
|(P̂− P)`f | =

∣∣∣∣∣∣P̂− P
∣∣∣∣∣∣
F
→ 0 a.s
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Glivenko-Cantelli: example

A classical example is the empirical CDF

Fn(t) =
1

n

n∑
i=1

1(−∞,t](Xi) = P̂ft

where ft(x) = 1(−∞,t](x)

Often, we are attempting to estimate a functional of the true
CDF with a plug-in version using the empirical CDF
(True CDF: F (t) = P(X ≤ t))

Sub Example: Let θ = θ(P) given by the median: θ = θ(P)
is argmin of P(−∞, x ] = infx F (x) subject to F (x) ≥ 1/2

Then, we might estimate θ(P) with θ̂ = θ(P̂) by plugging in Fn
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Glivenko-Cantelli: example

The Glivenko-Cantelli theorem says that

sup
t∈R
|Fn(t)− F (t)| → 0 a.s.

If we write F = {ft : ft(x) = 1(−∞,t](x), t ∈ R}, then

sup
t∈R
|Fn(t)− F (t)| = ||Fn − F ||R =

∣∣∣∣∣∣P̂− P
∣∣∣∣∣∣
F

and hence F is a Glivenko-Cantelli (G.C.) class.
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Glivenko-Cantelli: example

(Technical condition: P(−∞, t] > 1/2 for each t > θ(P). This forces a continuity

property that |median(P) - median(P’)| < ε if P and P’ are uniformly close.)

Sub Example: As F is G.C., for all δ > 0, for n large
enough

sup
t
|P̂(−∞, t]− P(−∞, t]| < δ

Fix ε > 0. Choose δ such that

P(−∞, θ − ε] < 1

2
− δ (This is always possible)

P(−∞, θ + ε] >
1

2
+ δ (This requires condition)
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Glivenko-Cantelli: example

Now,
P(−∞, θ̂] > P̂(−∞, θ̂]− δ︸ ︷︷ ︸

uniform closeness

≥ 1/2− δ

Hence, θ̂ > θ − ε as BWOC:

θ̂ ≤ θ − ε⇒ P(−∞, θ̂] ≤ P(−∞, θ − ε] < 1/2− δ

Also, it can be shown that θ̂ ≤ θ + ε

Hence, uniform closeness of Fn to F shows that the sample
and populations medians are close
(Note, we have asked for much more than needed, sometimes this can be too much)
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Glivenko-Cantelli: example

This gets refined to a rate of convergence by the
Dvoretzky-Kiefer-Wolfowitz (DKW) inequality

P(||Fn − F ||∞ > ε) ≤ 2e−2nε2

(Both the constants 2 cannot be improved upon (Massart (1990)))

This result, along with the previous discussion gets us a rate of
convergence for the median
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Some lasso theory
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Low assumption prediction: the lasso

Remember: Prediction risk

R(β) = EZ

[(
Y − X>β

)2
]

= EZ

[(
Y − X>β

)2 |D
]

Define the oracle estimator

β∗t = argmin
{β:||β||1≤t}

R(β)

(Important: This does not assume that EY |X is linear in X !)

The excess risk is

E(β̂t , β
∗
t ) = R(β̂t)− R(β∗t )
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Persistence

A procedure is persistent for a set of measures P if

∀P ∈ P , E(β̂t , β
∗
t )

p→ 0

(This is convergence in probability. What is random?)

Define the following set of distributions on R× Rp: Let
CP <∞ and

P = {P : PY 2 < CP , and |xj | < CP almost surely, j = 1, . . . , p}

We’d like to know how fast t can grow while still maintaining
persistency.
(Note: this set P is more restrictive than needed)
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Useful results and observations

Let

• Z = (x0, x1, . . . , xp)>, where x0 = Y

• γ = (−1, β1, . . . , βp)>

Then, for `β(Z ) = (Y − X>β)2,

P`β = P(Y − X>β)2 = γ>Σγ,

where Σjk = PZjZk for 0 ≤ j , k ≤ p

Likewise,
P̂`β = γ>Σ̂γ,

where Σ̂jk = n−1
∑n

i=1 ZijZik for 0 ≤ j , k ≤ p
(These can be written: Σ = PZZ> and Σ̂ = P̂ZZ>)
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Persistence theorem
Theorem
Over any P in P , the procedure

argmin
β∈{β:||β||1≤t}

P̂`β

is persistent provided log p = o(n) and

t = tn = o

((
n

log p

)1/4
)

(This theorem appears in Greenshtein, Ritov (2004))

(It’s worth noting that this rate is improved to a square root in Bartlett, et al. (2012).

This is at the expense of higher order powers of the log terms. These logarithmic

powers could be removed by bounding Talagrand’s γ2 functional directly, instead of an

entropy integral)
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Deterministic asymptotic notation

We write an = O(bn) (and say big ohh) provided

an
bn

= O(1),

where
cn = O(1)

means

• There exists a C

• Such that for sufficiently large N

• For all n ≥ N

• cn ≤ C
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Deterministic asymptotic notation

We write an = o(bn) (and say little ohh) provided

an
bn

= o(1),

where
cn = o(1)

means

• For all ε > 0

• There exists an N

• Such that for all n ≥ N

• cn ≤ ε
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Stochastic asymptotic notation
We write an = Op(bn) (and say big ohh p) provided

an
bn

= Op(1),

where
cn = Op(1)

means

• For all δ

• There exists a C

• Such that for sufficiently large N

• For all n ≥ N

• P(|cn| ≥ C ) ≤ δ

(This is also called bounded in probability, and is related to convergence in

distribution)
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Stochastic asymptotic notation

We write an = op(bn) (and say little ohh p) provided

an
bn

= op(1),

where
cn = op(1)

means

• For all ε > 0, δ > 0

• There exists an N

• Such that for all n ≥ N

• P(|cn| ≥ ε) ≤ δ

31



Stochastic asymptotic notation

Note that if we have random variables (Xn) and X , then

Xn → X in probability⇔ Xn − X = op(1)

We can also express Slutsky’s theorem(s)

• op(1) + Op(1) =?

• op(1)Op(1) =?

• op(1) + op(1)Op(1) =?
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Persistence proof
Note that, supβ∈{b:||b||1≤t} ||β||1 ≤ t. Also,

Lemma
Suppose a ∈ Rp and A ∈ Rp×p. Then

a>Aa ≤ ||a||21 ||A||∞ ,

where ||A||∞ := maxi ,j |Aij | is the entry-wise max norm.

Proof.

a>Aa ≤︸︷︷︸
Hölder’s

||a||1 ||Aa||∞ ≤ ||a||1 max
ij
|Aij | ||a||1 = ||a||21 ||A||∞ ,

These facts imply..
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Persistence proof

E(β̂t , β
∗
t ) = R(β̂t)︸ ︷︷ ︸

γ̂>t Σγ̂t

− R(β∗t )︸ ︷︷ ︸
(γ∗t )>Σ(γ∗t )

(1)

= γ̂>t Σγ̂t − γ̂>t Σ̂γ̂t + γ̂>t Σ̂γ̂t − (γ∗t )>Σ(γ∗t ) (2)

≤ γ̂>t Σγ̂t − γ̂>t Σ̂γ̂t + (γ∗t )>Σ̂γ∗t − (γ∗t )>Σγ∗t (3)

= γ̂>t (Σ− Σ̂)γ̂t + (γ∗t )>(Σ̂− Σ)(γ∗t ) (4)

≤ 2 sup
β∈{b:||b||1≤t}

γ>t (Σ− Σ̂)γt (2ε trick) (5)

≤ 2 sup
β∈{b:||b||1≤t}

||γt ||21
∣∣∣∣∣∣Σ− Σ̂

∣∣∣∣∣∣
∞

(Lemma) (6)

≤ 2(t + 1)2
∣∣∣∣∣∣Σ− Σ̂

∣∣∣∣∣∣
∞

(7)

Can we control the sup-norm part?
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Persistence proof

Nemirovski’s inequality: Let ξi ∈ Rp, i = 1, . . . , n be
independent, zero mean, finite variance random variables with
p ≥ 3. Define Sn =

∑n
i=1 ξi . Then for every q ∈ [2,∞]

E||Sn||2q ≤ e(2 log(p)− 1)
n∑

i=1

E||ξi ||2q

(Juditsky, Nemirovski (2000), Dümbgen, et al. (2010))

This should be compared with the näıve bound:

E||Sn||2q ≤
n∑

i=1

n∑
i ′=1

E||ξi ||q||ξi ′ ||q
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Persistence proof: Nemirovski’s

inequality

Motivation: Under Nemirovski’s assumptions,

• ES2
n =

∑n
i=1 Eξ2

i (p=1)

• In a Hilbert space with inner product 〈·, ·〉

E||Sn||2 =
n∑
i ,i ′

E〈ξi , ξi ′〉 =
n∑

i=1

E||ξi ||2

• What about a Banach space (e.g. || · ||q, q 6= 2)?
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Persistence proof

Nemirovski’s inequality: Let ξi ∈ Rp, i = 1, . . . , n be
independent, zero mean, finite variance random variables with
p ≥ 3. Define Sn =

∑n
i=1 ξi . Then for every q ∈ [2,∞]

E||Sn||2q ≤ e(2 log(p)− 1)
n∑

i=1

E||ξi ||2q

Let ξi = vec
(

1
n

(ZijZik − EZjZk)
)
∈ R(p+1)2

be the vectorized
difference of empirical covariance and the true covariance

Then ∣∣∣∣∣∣Σ− Σ̂
∣∣∣∣∣∣
∞

=

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

ξi

∣∣∣∣∣
∣∣∣∣∣
∞
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Persistence proof

E||Sn||2q ≤ e(2 log(p)− 1)
n∑

i=1

E||ξi ||2q

(Nemirovski’s inequality)

(
E
∣∣∣∣∣∣Σ− Σ̂

∣∣∣∣∣∣
∞

)2

≤ E
∣∣∣∣∣∣Σ− Σ̂

∣∣∣∣∣∣2
∞

(Jensen’s inequality)

= E

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

ξi

∣∣∣∣∣
∣∣∣∣∣
2

∞

≤ C log((p + 1)2)
n∑

i=1

E||ξi ||2∞

≤ 4CC 2
P log(p + 1)

1

n
(P∈P)

.
log(p)
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Persistence proof: Conclusion

P
(
E(β̂t , β

∗
t ) > δ

)
≤ E[E(β̂t , β

∗
t )]δ−1

(Markov’s inequality) (8)

≤ 2δ−1(t + 1)2E
∣∣∣∣∣∣Σ− Σ̂

∣∣∣∣∣∣
∞

(9)

. 2δ−1(t + 1)2

√
log p

n
(10)

Therefore, we have persistence provided log p = o(n) and

tn = o

((
n

log p

)1/4
)

Alternatively

E(β̂t , β
∗
t ) = Op

(
t2

√
log(p)

n

)
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Probably approximately correct

(PAC)
Probability bound ⇔ high probability upper bound:

P(error > δ) ≤ ε

gets converted to: with probability 1− ε

error ≤ δ

(This is known as a PAC bound)

Example:

P(|X − µ| > δ) ≤ E(X − µ)2

δ2

Hence, with probability at least 1− σ2

nδ2

|X − µ| ≤ δ
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Lasso theory: Summary

It is important to note that we do not assume...

• a linear model

• an additive stochastic component (let alone, Gaussian
errors)

• that the design is ‘almost’ uncorrelated

and we get that, with probability at least 1− Cδ−1t2

√
log(p)

n
,

R(β̂t) ≤ R(β∗t ) + δ
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Orlicz norms
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Orlicz norms

As alluded to previously, this type of theory is driven by the
tails of the distribution This is most commonly phrased in
terms of Orlicz norms

Let ψ be a non-decreasing, convex function such that
ψ(0) = 0. Then:

||X ||ψ = inf{C > 0 : Eψ
(
|X |
C

)
≤ 1}

(Jensen’s inequality shows this is a norm)

There are two main cases

• Lp norm: ψ(x) = xp ⇒ ||X ||ψ = ||X ||p = (E|X |p)1/p

• p-Orlicz: ψp(x) = ex
p − 1
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Orlicz norms

Two important facts:

• ||X ||ψp
≤ ||X ||ψq

(log 2)1/q−1/p, for p ≤ q

• ||X ||p ≤ p! ||X ||ψ1

(This allows us to interchange results about various norms, as long as we don’t care

about constants)
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Orlicz norms
By Markov’s inequality

P(|X | > x) ≤
Eψ(|X |)/ ||X ||ψ
ψ(x)/ ||X ||ψ

≤ 1

ψ(x)/ ||X ||ψ

=

{
||X ||p x−p if ψ(x) = xp

1

e
(x/||X ||ψ)p−1

� e−(x/||X ||ψ)p if ψ(x) = ψp(x)

Hence, Orlicz norms allow us to encode the tail behavior of a
random variable

In fact, it works as an if and only if:

If P(|X | > x) ≤ Ce−cx
p

then ||X ||ψp
≤ ((1 + C )c−1)1/p <∞
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Concentration inequalities
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General form

For showing results about empirical processes or performance
guarantees for algorithms, we want results of the form

P (|f (Z1, . . . ,Zn)− µn(f )| > ε) < δn

where δn → 0 and µn(f ) = Ef (Z1, . . . ,Zn).

For statistical learning theory, we need uniform bounds

P
(

sup
f ∈F
|f (Z1, . . . ,Zn)− µn(f )| > ε

)
< δn
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Hoeffding’s inequality

Suppose µ = EZ <∞ and P(Z ≥ 0) = 1. Then for any ε > 0

EZ =

∫ ∞
0

ZdP ≥
∫ ∞
ε

ZdP ≥ ε

∫ ∞
ε

dP = εP(Z > ε)

Yielding Markov’s inequality

This can be transformed to Chebyshev’s inequality by using
the variance

P(|Z − µ| > ε) ≤ σ2

ε2
⇒ P(|Z − µ| > ε) ≤ σ2

nε2

Observation: This is nice, but does not decay exponentially
fast. However, it only makes a second moment assumption
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Hoeffding’s inequality

A different transformation occurs via a Chernoff bound. For
any t > 0

P(Z > ε) = P
(
etZ > etε

)
≤ e−tεE[etZ ]

(This is the moment generating function. Here we see increasing moment conditions

giving tighter bounds)

This can be minimized over t as it is arbitrary

P(Z > ε) ≤ inf
t>0

e−tεE[etZ ]
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Hoeffding’s inequality

This is the main content of the paper Hoeffding (1963)

Hoeffding’s lemma: Suppose Z ∈ [a, b], then for any t

E[etZ ] ≤ etµ+t2(b−a)2/8

Proof idea:

EetZ ≤ − a

b − a
etb +

b

b − a
eta = E g(u)

where u = t(b − a). Write down Tayloy’s theorem for g up to
order 2 to get bound.
(The punchline: the bound is driven by a worst case)
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Hoeffding’s inequality

Hoeffding’s inequality:

P
(
|Z − µ| > ε

)
≤ 2e−2nε2/(b−a)2

Proof sketch: Let Z be zero mean

P
(
Z > ε

)
= P

(
etZ > etε

)
≤ e−tεEetZ

= e−tε
n∏

i=1

Eetn−1Zi

≤ e−tεe(t/n)2(b−a)2/8
(Now, minimize over t and symmetrize)
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Hoeffding’s inequality:

Generalizations
We can let the upper and lower limits change with i :
Zi ∈ [ai , bi ]

Also, we can invert this probability statement into a PAC
bound: with probability at least 1− δ

|Z − µ| ≤

√
c

2n
log

(
2

δ

)
where c = n−1

∑
i(bi − ai)

2

Compare to Chebyshev, which has growth

|Z − µ| ≤
√
σ2

nδ
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Hoeffding’s inequality: Example
Let Yi ∈ {0, 1}, Xi ∈ Rp and g : Rp → {0, 1} be a classifier.

Define the training error to be

R̂(g) =
1

n

n∑
i=1

1(Yi 6= g(Xi))

and
R(g) = P(Yi 6= g(Xi))

Then, R̂(g)− R(g) is zero mean and in the interval [−1, 1]:

R̂(g)− R(g) ≤

√
1

n
log

(
2

δ

)
with high probability (w.h.p)
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Refined Hoeffding’s inequality

The previous result was restricted to sample means.

This isn’t an essential part of the result, however, and is
removed in a generalization known as McDiarmid’s inequality

Suppose that

sup
Z1,...,Zn,Z ′i

|f (Z1, . . . ,Zn)− f (Z1, . . . ,Zi−1,Z
′
i ,Zi+1, . . . ,Zn)| ≤ ci

Then
P (|f (Z )− Ef (Z )| > ε) ≤ 2e−2ε2/

∑n
i=1 ci

54



McDiarmid’s inequality: Example
Let f (Z ) = supA |P̂(A)− P(A)|.

|f (Z )− f (Z ′)| =

∣∣∣∣sup
A
|P̂(A)− P(A)| − sup

A
|P̂′(A)− P(A)|

∣∣∣∣
≤ sup

A

∣∣∣|P̂(A)− P(A)| − |P̂′(A)− P(A)|
∣∣∣

≤ sup
A

∣∣∣P̂(A)− P(A)− (P̂′(A)− P(A))
∣∣∣

= sup
A

∣∣∣P̂(A)− P̂′(A)
∣∣∣ (| |a|−|b| |≤|a−b|)

(Either Zi is still in A and nothing changes, or Zi is no longer in A and hence the

difference is 1/n)

Therefore

P (|f (Z )− Ef (Z )| > ε) ≤ 2e−2nε2
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Sharper inequalities

These previous results don’t used any information about where
the probabilities mass lies

Hoeffding’s inequality is driven by the worst case: a R.V. that
puts all of its mass at the boundaries

If the variance of Zi is small, we can get sharper inequalities
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Sharper inequalities

This idea is that
∑n

i=1 Zi it approximately normally distributed
with variance v =

∑n
i=1 VZi

The tails of a N(0, v) are of order e−x
2/(2v)

Bernstein’s inequality gives a tail bound that is a combination
of a normal and a penalty for non-normality
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Sharper inequalities

Lemma: Suppose that |X | < c and EX = 0. Then for any
t > 0

E[etX ] ≤ exp

{
t2σ2

(
etc − 1− tc

(tc)2

)}
where σ2 = VX

Idea: The main part of the proof relies on the inequality: for
r ≥ 2

EX r = EX r−2X 2 ≤ c r−2σ2

(all higher moments than the variance are killed by the a.s. bound, while the first two

moments are computed as usual)
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Sharper inequalities

Bernstein’s inequality: If |Zi | ≤ c a.s. and EZi = µ,
then for all ε > 0

P
(
|Z − µ| > ε

)
≤ 2e

− nε2

2σ2+2cε/3

where σ2 = 1
n

∑n
i=1 VZi

Compare to Hoeffding’s:

P
(
|Z − µ| > ε

)
≤ 2e−

nε2

2c2
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Sharper inequalities

• If σ2 >> 2cε/3, then

log(Bernstein) � − nε2

2σ2
≤ −nε2

4c2
� log(Hoeffding)

• If σ2 << 2cε/3, then

log(Bernstein) � −3nε2

4cε
= −3nε

4c
≤ −nε2

4c2
� log(Hoeffding)

Note: This implies that the Bernstein bound is like an
exponential for large ε and normal for small ε
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Bernstein’s inequality

There is a related moment version of Bernstein’s inequality:

All that is really required out of the almost sure boundedness
of Zi is bounds for the moments

Suppose that Zi are such that E|Zi |m ≤ m!Mm−2ci/2 for all
m ≥ 2 and constants M , ci . Then

P
(
|Z − µ| > ε

)
≤ 2e

− nε2

2σ2+2cε

for σ2 ≥ 1
n

∑n
i=1 ci
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Bernstein’s inequality

The most useful part of Bernstein’s inequality is the associated
PAC bound

With probability at least 1− δ

|Z − µ| ≤
√

2σ2 log(1/δ)

n
+

2c log(1/δ)

3n

(|Zi | ≤ c, σ2 = n−1
∑n

i=1 VZi )

In particular, if the variance is small enough:

σ2 ≤ 2c2 log(1/δ)

9n
⇒ |Z − µ| ≤ 4c log(1/δ)

3n

(That is, we get a n-decay instead of
√
n-decay)
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Bounding maximums
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Finite maximums

Recall that

P(|X | > x) ≤

{
||X ||p x−p if ψ(x) = xp

1

e
(x/||X ||ψ)p−1

� e−(x/||X ||ψ)p if ψ(x) = ψp(x)

Hence, bounds on the sup of a norm, provide bounds on the
probability
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Finite maximums

For the Lp norm, a straight-forward bound exists

Suppose that we have the process Xt on |T | <∞

Using the fact that max |Xt |p ≤
∑
|Xt |p, it follows that∣∣∣∣∣∣∣∣max

t∈T
Xt

∣∣∣∣∣∣∣∣
p

=

(
Emax

t∈T
|Xt |p

)1/p

≤

(∑
t∈T

E|Xt |p
)1/p

≤ |T |1/p max
t∈T
||Xt ||p
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Finite maximums

This continues to hold, but with more complicated proof, for
many Orlicz norms

Under some technical conditions on ψ that include ψp∣∣∣∣∣∣∣∣max
t∈T

Xt

∣∣∣∣∣∣∣∣
ψ

≤ Kψ−1(|T |) max
t∈T
||Xt ||ψ

Here, K only depends on ψ

66



Finite maximums

Some observations:

• As ψ−1
p (|T |) = (log(1 + |T |))1/p, we get a logarithmic

increase in |T | while using the p-Orlicz norm, compared
to polynomial for Lp
• This conversion is useless when |T | =∞. This case can

be handled via generic chaining whereby each R.V. is
written as a sum of parts of the index space where

I The R.Vs have low correlation between partitions
I There aren’t too many in each partition

For a random stochastic process (Xt)t∈T , the number of links
in the chain depends on the (metric) entropy of T

This is quantified via covering, packing, and bracketing
numbers
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Covering and packing numbers

A pseudo-metric space (T , d) is a set with a function
d : T × T → [0,∞) such that

1. d(t, t) = 0

2. d(s, t) = d(t, s)

3. d(s, u) ≤ d(s, t) + d(t, u)

(The pseudo part comes from not insisting that d(s, t) = 0⇒ t = s)

Example: Define the metric related to the empirical measure

d(f , g) =
1

n

n∑
i=1

|f (Zi)− g(Zi)|

Then d is a pseudo-metric, but not a metric
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Covering numbers

An ε-cover is a set T̃ comprised of ε-balls such that T ⊆ T̃ .
The covering number of T is:

N(ε,T , d) = min{|T̃ | : T̃ is an ε− cover}

Note that

• T is totally bounded if N(ε,T , d) <∞ for all ε > 0

• The function ε 7→ logN(ε,T , d) is the metric entropy of
T
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Packing numbers

An ε-packing of T is a subset T̃ comprised of non-overlapping
ε-balls. The packing number is

M(ε,T , d) = max{|T̃ | : T̃ is an ε− packing of T}
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Covering and packing numbers

For almost all purposes, the difference between these two
concepts are unimportant:

For instance: ∀ε > 0

M(ε) ≤ N(ε)

Related lower bounds for M in terms of N are possible with
scalar transformations of ε
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Covering and packing numbers

Computing either covering or packing numbers can be very
difficult

I advise looking up known results if you go this route, such as

• Covering numbers of the unit ball of Rd (such as with
ridge or lasso)

• Compact sets of functions
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Examples
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Example: Uniform risk

Suppose we want to minimize P̂`f = n−1
∑n

i=1 |f (Xi)− Yi |2
over a set of functions Fn

The main tool in showing consistency/rates of convergence for
such estimators is to show that the empirical risk looks like the
true risk, uniformly over Fn:

sup
f ∈Fn

∣∣∣P̂`f − P`f
∣∣∣→ 0 a.s.

It’s easier to generate the set of functions1 Ln = {`f : f ∈ Fn}
and look at

sup
`∈Ln

∣∣∣P̂`− P`
∣∣∣

1Often, Ln is closed
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Example: Uniform risk

Using Hoeffding’s inequality shows that if `(Z ) ∈ [0, b] a.s.,
then

P
(∣∣∣P̂`− P`

∣∣∣ > ε
)
≤ 2 exp

{
−2nε2

b2

}
By a union bound (with L finite)

P
(

sup
`∈Ln

∣∣∣P̂`− P`
∣∣∣ > ε

)
≤ 2|Ln| exp

{
−2nε2

b2

}
(P ∪Jj=1 Aj ≤

∑J
j=1 P(Aj ))

This pairing is quite common in basic theory
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Example: Uniform risk

This gives us an in probability convergence

This can be strengthened to an almost sure convergence via
the Borel-Cantelli lemma

If |Ln| grows slowly enough for

∞∑
n=1

|Ln| exp

{
−2nε2

b2

}
<∞

Then
sup
`∈Ln

∣∣∣P̂`− P`
∣∣∣→ 0 a.s.
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Example: Uniform risk

Though this will work for some situations, |Ln| is really infinite

In this case, the goal becomes to find a finite set Ln,ε such that{
sup
`∈Ln

∣∣∣P̂`− P`
∣∣∣ > ε

}
⊆

{
sup
`∈Ln,ε

∣∣∣P̂`− P`
∣∣∣ > ε′

}

Letting ε′ be a function of ε but not n

We construct Ln,ε using covering numbers with respect to
different metrics ||·||
(This corresponds to (T , d)↔ (Ln, ||·||))
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Example: Uniform risk
The most basic choice is

d∞(`, `′) = ||`− `′||∞ = sup
z
|`(z)− `′(z)|

An ε-cover of Ln with respect to d∞ is such that for every
` ∈ Ln, ∃`ε ∈ Ln,ε such that

d∞(`, `ε) = ||`− `ε||∞ = sup
z
|`(z)− `ε(z)| < ε

We’ll define the L∞ covering number

N∞(ε,Ln) = N∞(ε,Ln, ||·||∞)

to be the minimal ε-cover
(Alternatively known as the uniform covering number (not to be confused with

uniform convergence))
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Example: Uniform risk

Putting this together, we get

P
(

sup
`∈Ln

∣∣∣P̂`− P`
∣∣∣ > ε

)
≤ 2N∞(ε/3,Ln) exp

{
−2nε2

9b2

}
Basic idea: Let Ln,ε/3 be a minimal ε/3-cover of Ln. Fix a
` ∈ Ln, then ∃`′ ∈ Ln,ε/3 such that ||`− `′||∞ < ε/3∣∣∣P̂`− P`

∣∣∣ ≤ ∣∣∣P̂`− P̂`′
∣∣∣+
∣∣∣P̂`′ − P`′

∣∣∣+ |P`′ − P`|

≤ ||`− `′||∞ +
∣∣∣P̂`′ − P`′

∣∣∣+ ||`− `′||∞

≤ 2ε/3 +
∣∣∣P̂`′ − P`′

∣∣∣
Now, we do as before, but with N∞(ε/3,Ln) = |Ln,ε/3|
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Example: Uniform risk

Unfortunately, N∞(ε/3,Ln) is often too large for

∞∑
n=1

N∞(ε/3,Ln) exp

{
−2nε2

9b2

}
<∞

(The uniform norm is quite strong)

At issue is that∣∣∣P̂`− P̂`′
∣∣∣+ |P`′ − P`| ≤ ||`− `′||∞ + ||`− `′||∞

is quite coarse

A solution is to appeal to random L1 norm covers
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Example: Uniform risk
The idea is based around fictively creating a ghost sample

Z1, . . . ,Z2n such that Zi
i .i .d∼ P for i = 1, . . . , 2n

Now, we will think of P` ≈ P̂2n
n+1` and form{

sup
`∈Ln

∣∣∣P̂`− P̂2n
n+1`

∣∣∣ > ε

}
⊆

{
sup
`∈Ln,ε

∣∣∣P̂`− P̂2n
n+1`

∣∣∣ > ε′

}
where now Ln,ε is going to be a data-dependent set
(i.e. a random variable)

Now, we cover Ln with ε-covers with respect to

||`− `′||n =

∫
|`− `′|d P̂n

1

with covering number N1(ε,Ln) = N(ε,Ln, ||·||n)
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Example: Uniform risk

The randomness of the covering number can be dealt with by
following four steps

1. Ghost sample

2. Introduction of additional randomness via
Rademacher random variables

3. Conditioning to introduce covering number

4. Hoeffding

Let’s go over each of these briefly
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Example: Uniform risk

Ghost sample: It can be shown that for n ≥ 2b2/ε2

P
(

sup
`∈Ln

∣∣∣P̂`− P`
∣∣∣ > ε

)
≤ 2P

(
sup
`∈Ln

∣∣∣P̂`− P̂2n
n+1`

∣∣∣ > ε/2

)
(See pages 136-138 of Györfi et al. (2002) for details)
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Example: Uniform risk
Introduction of additional randomness: As all the
R.V.s are iid, their difference is invariant to a random sign
change with Rademacher R.V.s

P
(

sup
`∈Ln

∣∣∣P̂`− P̂2n
n+1`

∣∣∣ > ε

2

)
= P

(
sup
`∈Ln

∣∣∣∣∣
n∑

i=1

εi (`(Zi)− `(Zi+n))

∣∣∣∣∣ > nε

2

)

≤ P

(
sup
`∈Ln

∣∣∣∣∣
n∑

i=1

εi`(Zi)

∣∣∣∣∣ > nε

4

)
+ P

(
sup
`∈Ln

∣∣∣∣∣
n∑

i=1

εi`(Zi+n)

∣∣∣∣∣ > nε

4

)

= 2P

(
sup
`∈Ln

∣∣∣∣∣
n∑

i=1

εi`(Zi)

∣∣∣∣∣ > nε

4

)
(This is known as symmetrization. We’ll return to this again)
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Example: Uniform risk

Conditioning: To introduce the covering number, observe
that

P

(
sup
`∈Ln

∣∣∣∣∣
n∑

i=1

εi`(Zi)

∣∣∣∣∣ > nε

4

)

= EZPε

(
∃` ∈ Ln :

∣∣∣∣∣
n∑

i=1

εi`(zi)

∣∣∣∣∣ > nε

4

∣∣∣∣(Zi)
n
i=1 = (zi)

n
i=1

)

Now, we can apply the complexity part: Let Ln,ε/8 be an
ε/8-cover of Ln with respect to ||·||n:

1

n

n∑
i=1

|`(zi)− `′(zi)| < ε/8
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Example: Uniform risk

Conditioning: Fix an ` and find its `′ ∈ Ln,ε/8,∣∣∣∣∣1n
n∑

i=1

εi`(zi)

∣∣∣∣∣ ≤
∣∣∣∣∣1n

n∑
i=1

εi`
′(zi)

∣∣∣∣∣+ ε/8

Showing (conditional on (Zi)
n
i=1 = (zi)

n
i=1)

P

(
∃` ∈ Ln,ε/8 :

∣∣∣∣∣1n
n∑

i=1

εi`(zi)

∣∣∣∣∣+ ε/8 >
ε

4

)

≤ N1(ε,Ln) max
`∈Ln,ε/8

P

(∣∣∣∣∣1n
n∑

i=1

εi`(zi)

∣∣∣∣∣ > ε

8

)
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Example: Uniform risk

Hoeffding: Lastly, we just need to bound

P

(∣∣∣∣∣1n
n∑

i=1

εi`(zi)

∣∣∣∣∣ > ε

8

)

This can be done with Hoeffding
(Recall, though, that Bernstein’s tends to give better bounds)

P

(∣∣∣∣∣1n
n∑

i=1

εi`(zi)

∣∣∣∣∣ > ε

8

)
≤ 2 exp

{
−2n(ε/8)2

(2b)2

}
≤ 2 exp

{
− 2nε2

128b2

}
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Example: Uniform risk

In conclusion:

P
(

sup
`∈Ln

∣∣∣P̂`− P`
∣∣∣ > ε

)
≤ 8EN1(ε,Ln) exp

{
− 2nε2

128b2

}

Now, we need to know the expected L1 covering number

This can be difficult to calculate. Hence, we can turn to a few
notions

• VC dimension

• Bracketing numbers
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Example: Uniform risk

Recall the VC dimension of a class of sets A is the largest
number of points Gn which we can shatter
(That is, the largest n such that |{G ⊂ Gn : G = Gn ∩ A,A ∈ A}| = 2n)

Let
G = {(z , t) ∈ Rp+1 × R : t ≤ `(z), ` ∈ Ln}

(This is the set of all subgraphs of functions in Ln)

We can bound the Lq packing numbers by VCG = VC
dimension of G

89



Example: Uniform risk
Let ν be a probability measure on Rp+1 and let
sup`∈Ln ||`||∞ ≤ b. Then for any ε ∈ (0, b/4)

M(ε,Ln, ||·||Lq(ν)) ≤ 3

(
2ebq

εq
log

(
3ebq

εq

))VCG

(Remember: packing numbers are essentially covering numbers for our purposes. Note

that the bound on the RHS doesn’t depend on ν)

Hence, we can leverage the “agreement” between the
empirical Lq norm and packing numbers to bound the random
quantity with the nonrandom VC dimension

Unfortunately,

• the gap between these bounds can be huge

• VC dimension can frequently only be upper-bounded itself
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Example: Uniform risk
Alternatively, we can use bracketing numbers

For a given function class F , we can make a bracket:

[L,U] = {f ∈ F : L(x) ≤ f (x) ≤ U(x), ∀x}

and a bracketing of F is a collection of brackets such that

F ⊆
⋃

[Lj ,Uj ]

We are most interested in ε− Lq(P)-bracketings: for all j(∫
|Uj − Lj |qdP

)1/q

≤ ε

This smallest ε− Lq(P)-bracketing is the bracketing number

N[ ](ε,F , ||·||Lq(P))
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Example: Uniform risk
Bracketing numbers are a bit larger that covering numbers

N(ε,F , ||·||Lq(P)) ≤ N[ ](2ε,F , ||·||Lq(P))

But they provide stronger control over complexity. To wit:

Fundamental GC theorem: If N[ ](ε,F , ||·||L1(P)) <∞
for all ε > 0. Then F is GC

Proof idea: For any f ∈ F , ∃j

(P̂− P)f ≤ (P̂− P)Uj + (PUj − f ) ≤ (P̂− P)Uj + ε

Hence

sup
f ∈F

(P̂− P)f ≤ max
j

(P̂− P)Uj + ε ≤ 2ε (a.s. for large enough n)
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Example: Uniform risk

We can get an exponential bound using bracket, just like for
covering numbers/VC dimension:

P
(

sup
`∈Ln
|(P̂− P)`| > ε

)
≤ 4N[ ](ε,F , ||·||L1(P)) exp

{
−96nε2

76Fb

}
where

• F = sup` ||`||L1(P)

• b = sup` ||`||L∞(P)

The main utility of this bound is that, in my experience,
bracketing numbers are easier to bound/compute
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Example: Uniform risk

Important case: Lipschitz in a parameter

Suppose the L = {`β : β ∈ B}.

For example, for regression:

`β(Z ) = (Y − X>β)2

So, the squared error loss class is indexed by the regression
coefficients

Sometimes, the complexity of L can be translated to the
complexity of B
(For constrained least squares, this is a huge win as the complexity of norm balls in

Euclidean space is well known)
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Example: Uniform risk
Important case: Lipschitz in a parameter
Intuitively, a bracket on B can make a bracket on L, provided
`β − `β′ can’t change too much relative to β − β′.

Translated into mathematics, this is a Lipschitz-type
constraint:

Let (B, ||·||) be a normed subset of Rp+1. If there is a function
m where

|`β(z)− `β′(z)| ≤ m(z) ||β − β′||
then

N[ ](ε,F , ||·||Lq(P)) ≤

(
4
√
p + 1 diam(B) ||m||qLq(P)

ε

)p+1

(Often this approach won’t work in “high dimensions” as the dimension exponential

dominates the sample size exponential)
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Example: Uniform risk

To get a more careful bound, we need the contraction theorem
(See Ledoux and Talagrand (1991). Often we need to make more assumptions to

bound the symmetrized process, as in the last example in this lecture)

If the loss ` is Lipschitz, then for any function f∗ ∈ F and
nonrandom zi

E

(
sup
f ∈F

∣∣∣∣∣
n∑

i=1

εi
(
`f (zi)− `f∗(zi )

)∣∣∣∣∣
)

≤ 2E

(
sup
f ∈F

∣∣∣∣∣
n∑

i=1

εi (f (zi)− f∗(zi))

∣∣∣∣∣
)

(See van der Geer (2008) for an interesting application of this technique)
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Sub-Gaussian bounds
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Sub-Gaussian

A sub-Gaussian random variable is one that has tail decay at
least as fast a Gaussian

Note that X ∼ N(0, 1) has P(|X | > x) ≤ 2 exp{−x2/2} and
in fact ||X ||ψ2

=
√

8/3

Any R.V. that obeys this tail quantity is a sub-Gaussian R.V.

A sub-Gaussian process is a {Xt}t∈T where

P(|Xt − Xs | > x) ≤ 2 exp

{
− x2

2d2(s, t)

}
Note that a process is sub-Gaussian with respect to the
pseudo-metric on the index set
(This is crucial to remember)
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Sub-Gaussian
Reminder: P(|X | > x) ≤ Ce−cx

p
iff ||X ||ψp

<∞. Hence:

||Xs − Xt ||ψ2
≤
√

6d(s, t)

(Here, we can see our approach. If our process isn’t necessarily Lipschitz, but it is

sub-Gaussian, then it is Lipschitz with respect to the ψ2-Orlicz norm and d)

Example: Any Gaussian process is sub-Gaussian with respect
to the (standard deviation) pseudo-metric d(s, t) = σ(Xs −Xt)

Example: Let ε1, . . . , εn be i.i.d uniform({−1, 1}) and
a = (a1, . . . , an)> ∈ Rn. Then

Xa =
n∑

i=1

aiεi

is a sub-Gaussian process w.r.t. d(a, b) = ||a − b||2 known as
the Rademacher process
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Sub-Gaussian

This last example follows from an important special case of
Hoeffding’s inequality

P(|Xa| > x) ≤ 2 exp

{
− x2

2 ||a||22

}

It turns out the innocuous looking Rademacher process is
crucial. But first, let’s state the main result
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Sub-Gaussian

Suppose we sub-Gaussian process (Xt)t∈T such that
||Xs − Xt ||ψ2

≤ Cd(s, t)

Also, let the diameter of T be

D = sup
s,t∈T

d(s, t)

Then2 if Xt is zero mean

E sup
t∈T

Xt ≤ K

∫ D

0

√
log(N(ε,T , d))dε

(See Chapter 1.2 of Talagrand’s Generic Chaining. For the symmetrizing statement for

lower bounds, see Lemma 1.2.8)

2There are some other technical conditions, notably separability, to
this result (the sup of a measurable process isn’t necessarily measurable)
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Sub-Gaussian uniform bound

E sup
t∈T

Xt ≤ K

∫ D

0

√
log(N(ε,T , d))dε

Note: The
√

log part comes from the inverse of the ψ2

function. The
∫

comes from ‘adding’ together subsets of T

Some notes:

• This is known as Dudley’s inequality

• The upper bound can be improved with Talagrand’s Γ
function, as demonstrated in his book Generic Chaining

• Often, Dudley’s bound gives the appropriate rate, but
with unnecessary log factors
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Sub-Gaussian uniform bound

The most important process is the empirical process:∣∣∣∣∣∣P̂− P
∣∣∣∣∣∣
F

= sup
f ∈F
|P̂f − Pf |

Unfortunately, the empirical process is not sub-Gaussian and
we can’t use the previous bound

In fact, by Bernstein’s inequality, the typical tail behavior is a
mixture of sub-Gaussian and sub-exponential tails

The main tool in this case is called symmetrization
(Theorem 1.2.7 in Generic Chaining provides the relevant upper bound for processes

that are mixtures of ψ2 and ψ1 Orlicz norm bounds. I’ve never seen anyone go this

route in statistics, though)
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Sub-Gaussian uniform bound

For Rademacher R.V.s εi

E
∣∣∣∣∣∣P̂− P

∣∣∣∣∣∣
F
≤ 2

n
EZEε sup

f ∈F

∣∣∣∣∣
n∑

i=1

εi f (Zi)

∣∣∣∣∣
This generates a random process that is conditionally
sub-Gaussian (Hoeffding’s inequality) on the observed data,
indexed by the (random) coordinate evaluation f (Zi)

Sub-Gaussian must always be stated with respect to a metric
on the indexing set.

This turns out to be rather complicated in this case
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Sub-Gaussian uniform bound

Let’s return to the generalization error bound for the lasso

Previously, we used Nemirovski’s inequality to bound the
process

It was conjectured in Greenshtein, Ritov (2004) that the
induced n1/4 rate could be increased to n1/2

(Additionally, they showed that under Gaussian design, they could in fact get the 1/2

rate)

Recently, this was answered in the affirmative by Bartlett et al.
(2012), using the techniques we have discussed so far
(In fact, they were able to make weaker assumptions as well)

105



Sub-Gaussian uniform bound
The approach is to
1. Symmetrize with Rademacher r.v.s
2. Bound with Dudley’s inequality Eε supf ∈F |

∑n
i=1 εi f (Zi)|

3. Compute the
√

log(N , ε,T , d), where d is now the
complicated norm from the symmetrization

4. Integrate this bound up to the diameter of the indexing
set

If we do this, we can increase t like

tn = o

( √
n

log3/2(n) log3/2(np)

)
which, compared with Greenstein’s result provides a faster rate

tn = o

((
n

log(p)

)1/4
)
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Bookkeeping

• The best known concentration inequality of the
Bernstein-type can be found in Bousquet (2001)

• The best possible bounds for the E supt∈T Xt is given by
Talagrand’s Γ-function, though I’ve never seen this used

• symmetrization + Dudley’s bound is the more popular
route
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