
Linear Methods for Regression:
Introduction

-Statistical Machine Learning-

Lecturer: Darren Homrighausen, PhD

1

The Setup

Suppose we have data

D = {(X1,Y1), (X2,Y2), . . . , (Xn,Yn)},

where

• Xi ∈ Rp are the features
(or explanatory variables or predictors or covariates. NOT INDEPENDENT

VARIABLES!)

• Yi ∈ R are the response variables.
(NOT DEPENDENT VARIABLE!)

Our goal for this class is to find a way to explain (at least
approximately) the relationship between X and Y .

2

Prediction risk for regression

Given the training data D, we want to predict some independent
test data Z = (X ,Y)

This means forming a f̂ , which is a function of both the range of
X and the training data D, which provides predictions Ŷ = f̂ (X).

The quality of this prediction is measured via the prediction risk1

R(f̂) = PD,Z (Y − f̂ (X))2.

We know that the regression function, f∗(X) = P[Y |X], is the best
possible predictor.

Note that f∗ is unknown

1Note: sometimes we integrate with respect to D only, Z only, neither
(loss), or both.

3

Notation recap

• X is a vector of measurements for each subject
(Example: Xi = [1, incomei , educationi]

>)

• x is a vector of subjects for each measurement
(Example: xj = [income1, income2, . . . , incomen]>)

• X j
i is the j th measurement on the i th subject

(Example: X j
i = incomei)

4

Imposing linearity

5

A linear model: Multiple regression
If we specify the model: f∗(X) = X>β =

∑p
j=1 xjβj

⇒ Yi = X>i β + εi

Then we recover the usual linear regression formulation

X =
[
x1 · · · xp

]
=


X>1
X>2

...
X>n

 .
(When referring to j th entry of any Xi , we write X j

i)

Commonly, a column x>0 = (1, . . . , 1)︸ ︷︷ ︸
n times

is included

This encodes an intercept term, with intercept parameter β0

We could (should?) seek to find a β such that Y ≈ Xβ
6

A linear model: Polynomial effects

Instead, we may believe

f∗(X) = β0 +

p∑
j=1

X jβj +

p∑
j=1

p∑
j ′=1

X jX j ′αj ,j ′

Then the feature matrix is

X =
[
x0 x1 · · · xp x2

1 x1x2 · · · x2
p

]
(Here, interpret vector multiplication in the entrywise sense, as in R: x * y)

7

A linear model: General form

Specify functions φk : Rp → R, k = 1, . . . ,K

X = [φk(Xi)] =


Φ(X1)>

Φ(X2)>

...
Φ(Xn)>

 ∈ Rn×K ,

where Φ(·)> = (φ1(·), . . . , φK (·)).

Example:
φk(X) = X jX j ′

is an interaction for the j th and j ′th covariates

In this case K =
(p

2

)
+ p = p(p − 1)/2 + p = (p2 + p)/2

8

A linear model: General form

We don’t know if f∗ can actually be expressed as a linear function

Hence, write

Φ = {f : ∃(βk)Kk=1 such that f =
K∑

k=1

βkφk = β>Φ}

and
f∗,Φ = argmin

f ∈Φ
P`f .

The function f∗,Φ is known as the linear oracle

This is the object we are estimating when using a linear model
(Alternatively, we are assuming f∗ ∈ Φ)

9

A linear model: Multiple regression redux

Let K = p and define φk to be the coordinate projection map

That is,
φk(Xi) ≡ X k

i

We recover the usual linear regression formulation

X = [φk(Xi)] =


Φ(X1)>

Φ(X2)>

...
Φ(Xn)>

 =


X 1

1 X 2
1 · · · X p

1

X 1
2 X 2

2 · · · X p
2

...
X 1
n X 2

n · · · X p
n

 =


X>1
X>2

...
X>n

 .

10

A linear model: Orthogonal basis expansion

Suppose f∗ ∈ F , where F is a Hilbert space with norm induced by
the inner product 〈·, ·〉.

Let (φk)∞k=1 be an orthonormal basis for F

Write

f∗ =
∞∑
k=1

〈f∗, φk〉φk =
∞∑
k=1

βkφk

Then we can estimate f∗,Φ by finding the coefficients of the
projection on Φ.

By Parseval’s theorem for Hilbert spaces this induces an
approximation error of

∑∞
k=K+1 β

2
k .

This is small if f∗ is smooth
(for instance, if f∗ has m derivatives, then βk � k−m)

11

A linear model: Neural Nets

Let
φk(X) = σ(α>k X + bk),

where σ(t) = 1/(1 + e−t) is the sigmoid activation function.

Then we can form the feature matrix

X =

 φ1(X1) φ2(X1) · · ·
...

φ1(Xn) φ2(Xn) · · ·


For future reference, this is a

“single-layer feed-forward neural network model with linear output”

(It is actually a bit more complicated, as the parameters in the σ map are estimated,

and hence this is actually nonlinear)

12

A linear model: Radial basis functions

Let
φk(X) = e−||µk−X ||

2
2/λk .

Then f∗,Φ is called an2:

“Gaussian radial-basis function estimator’.

This turns out to be a parametric form of a more general technique
known as Gaussian process regression.

2More on this later
13

Detour

14

Notation comment

WARNING: It is common to conflate:

• the number of original covariates (p)

• the number of created features (K)

This means we will always write X ∈ Rn×p, regardless of the
transformation Φ that generates the matrix X

The reasons for this are

• multiple regression comes from a particular, degenerate choice
of Φ

• the mapping Φ is often not explicitly created (and K =∞)

Bottom line: Think of X as the vector after transformations
and X ∈ Rn×p regardless of the choice of Φ

15

End detour

16

Turning these ideas into procedures

Each of these methods have parameters to choose:

• p could be very large. Do we include all covariates?

• If we include some polynomial (or other function) terms,
should be include all of them?

• For neural nets, we need to choose: the activation function σ,
the directions αk , bias terms bk , as well as the number of
units in the hidden layer

Additionally, we need to estimate the associated coefficient vector
β, α, or whatever

We would like the data to inform these parameters

17

Training error and risk estimation

The linear oracle is defined to be

f∗,Φ = argmin
f ∈Φ

P`f .

(Reminder: for regression, `f (Z) = (f (X)− Y)2)

Hence, it is intuitive to use P̂ to form the training error

R̂(f) = P̂`f =
1

n

n∑
i=1

`f (Zi) =
1

n

n∑
i=1

(f (Xi)− Yi)
2 =

1

n
||Y − Xβ||22

In many statistical applications, this plug-in estimator is minimized
(Think of how many techniques rely on an unconstrained minimization of squared

error, or maximum likelihood, or estimating equations, or ...)

This sometimes has disastrous results

18

Example

Let’s suppose D is drawn from

n = 30

X = (0:n)/n*2*pi

Y = sin(X) + rnorm(n,0,.25)

Now, let’s fit some polynomials to this data.

We consider the following models:

- Model 1: f (Xi) = β0 + β1Xi

- Model 2: f (Xi) = β0 + β1Xi + β2X
2
i + β3X

3
i

- Model 3: f (Xi) =
∑10

k=0 βkX
k
i

- Model 4: f (Xi) =
∑n−1

k=0 βkX
k
i

Let’s look at what happens...

19

Example

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

0 1 2 3 4 5 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

X

Y

The R̂’s are:

R̂(Model 1) = 10.98

R̂(Model 2) = 2.86

R̂(Model 3) = 2.28

R̂(Model 4) = 0

What about predicting new
observations (∆)?

20

Bias and variance

21

Prediction risk for regression

Note that R(f̂) can be written as

R(f̂) =

∫
bias2(x)dPX+

∫
var(x)dPX+σ2

where

bias(x) = Pf̂ (x)− f∗(x)

var(x) = Vf̂ (x)

σ2 = P(Y − f∗(X))2

(As an aside, this decomposition applies to much

more general loss functionsa)

aVariance and Bias for General Loss Functions; , Machine Learning 2003

22

Bias-variance tradeoff

This can be heuristically thought of as

Prediction risk = Bias2 + Variance.

There is a natural conservation between these quantities

Low bias → complex model → many parameters → high variance

The opposite also holds
(Think: f̂ ≡ 0.)

We’d like to ‘balance’ these quantities to get the best possible
predictions

23

Bias-variance tradeoff

Variance

Squared Bias

R(f) (Risk)

Model Complexity ↗

24

Example

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

0 1 2 3 4 5 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

X

Y

• Black model has low
variance, high bias

• Green model has low
bias, but high variance

• Red model and Blue
model have intermediate
bias and variance.

We want to balance these two
quantities.

25

Bias vs. Variance

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

0 1 2 3 4 5 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

X

Y

Variance

Squared Bias

R(f) (Risk)

Model Complexity ↗

26

Turning these ideas into procedures

There are roughly three regimes of interest, assuming X ∈ Rn×p

Regimes

n� p

n is small

Classical

n is large

Big data

n ≤ p

High dimensional

27

Classical regime

Suppose we have the matrix X with the features we’re considering

Now, we want to estimate a parameter vector β in the model

Y = Xβ + ε

(E.g. we are modeling the regression function as (globally) linear in these features)

Minimize the training error R̂(f) over all functions fβ(X) = X>β

β̂LS = argmin
β

R̂(fβ) = argmin
β
||Y − Xβ||22

(Though we write this as equality, there is only a unique solution if rank(X) = p)

28

Classical regime

In this case,

f̂ (X) = X>β̂LS = X>X†Y =︸︷︷︸
rank(X)=p

X>(X>X)−1X>Y

(X† is the Moore-Penrose pseudo inverse)

The fitted values are Xβ̂LS = HY , where H is the orthogonal
projection onto the column space of X
(Contrary to β̂LS , the fitted values are always unique)

29

Classical regime

We can examine the first and second moment properties of β̂LS

Eβ̂LS = β (unbiased) (1)

Vβ̂LS = X†(VY)(X†)> =︸︷︷︸
rank(X)=p,VY∝In

V[Yi](X>X)−1 (2)

Note: Here is where we need to be more careful:

The ‘true’ parameter β we are estimating is a coefficient vector of
the linear oracle with respect to

{f : There exists β where f (X) = β>X}

There is no reason to believe this approximation error is zero,
hence ‘bias’ really references the linear oracle

30

Classical regime

The Gauss-Markov theorem assures us that this is the best linear
unbiased estimator of β
(Effectively, equation (2) is minimized subject to equation (1))

Also, it is the maximum likelihood estimator under a
homoskedastic, independent Gaussian model
(Hence, it is asymptotically efficient)

Does that necessarily mean it is any good?

31

Classical regime

Write X = UDV> for the SVD of X

Then Vβ̂LS ∝ (X>X)−1 = VD−1 U>U︸ ︷︷ ︸
=I

D−1V> = VD−2V>

Reminder: Elements of D, dj , are the axes lengths of the ellipse
induced by X

Also, suppose we are interested in estimating β,

E||β̂LS − β||22 = trace(Vβ̂) ∝
p∑

j=1

1

d2
j

(Can you show this? Hint: add and subtract Eβ̂LS)

Important: Even in the classical regime, we can do arbitrarily
badly if dp ≈ 0!

32

Returning to polynomial example: Bias

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

0 1 2 3 4 5 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

X

Y

Using a Taylor’s series, for all X

sin(X) =
∞∑
q=0

(−1)qX 2q+1

(2q + 1)!
= Φ(X)>β

Higher order polynomial models will reduce the bias part

33

Returning to polynomial example: Variance

The least squares solution is given by solving min ||Xβ − Y ||22

X =

1 X1 . . . X p−1
1

...

1 Xn . . . X p−1
n

 ,
is the associated Vandermonde]matrix.

This matrix is well known for being numerically unstable

(Letting X = UDV>, this means that d1/dp →∞)

Hence3

||(X>X)−1||2 =
1

d2
p

grows larger, where here || · ||2 is the spectral (operator) norm]

3This should be compared with the variance computation in equation (2)
34

Returning to the polynomial example

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

0 1 2 3 4 5 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

X

Y

35

Conclusion

Conclusion: Fitting the full least squares model, even in the
classical regime, can lead to poor prediction/estimation
performance

In the other regimes, we encounter even for sinister problems

36

Big data regime

Big data: The computational complexity scales extremely quickly.
This means that procedures that are feasible classically are not for
large data sets

Example: Fit β̂LS with X ∈ Rn×p. Next fit β̂LS with X ∈ R3n×4p

The second case will take ≈ (3 ∗ 42) = 48 times longer to
compute, as well as ≈ 12 times as much memory!
(Actually, for software such as R it might take 36 times as much memory, though

there are data structures specifically engineered for this purpose that update objects

‘in place’)

37

Conclusion

p = 300; n = 10000

Y = rnorm(n); X = matrix(rnorm(n*p),nrow=n,ncol=p)

start = proc.time()[3]

out = lm(Y~.,data=data.frame(X))

end = proc.time()[3]

smallTime = end - start

n = nMultiple*n; nMultiple = 3

p = pMultiple*p; pMultiple = 4

Y = rnorm(n); X = matrix(rnorm(n*p),nrow=n,ncol=p)

start = proc.time()[3]

out = lm(Y~.,data=data.frame(X))

end = proc.time()[3]

bigTime = end - start

> print(bigTime/smallTime)

elapsed

38.61458

> print(nMultiple*pMultiple**2)

[1] 48 38

Example big data problem

39

Example big data problem

Buyer:

Seller:

The data (∼750 Gb, millions of rows, thousands of columns):

User ID Rating Comment Role WinBid SellerID
dorkyporky 134 1 fast delivery.....very good seller...AAA++ B 15.51 princesskitten2001

40

High dimensional regime
High dimensional: These problems tend to have many of the
computational problems as Big data, as well as a rank problem:

Suppose X ∈ Rn×p and p > n

Then rank(X) = n and the equation Xβ̂ = Y :

• can be solved exactly (that is; the training error is 0)
• has an infinite number of solutions

n > p n < p
41

High dimensional regime: Example

42

