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Subset selection and regularization

For now, let’s assume we are doing ordinary least squares, and
hence the design (feature) matrix is X ∈ Rn×p.

We want to do model selection for at least three reasons:

• Prediction accuracy: Can essentially always be improved
by introducing some bias

• Interpretation: A large number of features can sometimes
be distilled into a smaller number that comprise the “big
(little?) picture”

• Computation: A large p can create a huge computational
bottleneck.
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Subset selection and regularization

We will address three related ideas

• Model selection: Selection of only some of the original p
features

• Dimension reduction/expansion: Creation of new
features to help with prediction

• Regularization: Add constraints to optimization problems
to provide stabilization
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Risk estimation

Reminder: Prediction risk is

R(f ) = PZ ,D`f ↔ Bias + Variance

The overridding theme is that we would like to add a judicious
amount of bias to get lower risk

As R isn’t known, we need to estimate it

As discussed, R̂train = P̂`f isn’t very good
(In fact, one tends to not add bias when estimating R with P̂`f )

R̂train tends to underestimate R, hence we can call it optimistic
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Risk estimation: a general form
Assume that we get a new draw of the training data, D0, such that
D ∼ D0 and

D = {(X1,Y1), . . . , (Xn,Yn)} and D0 = {(X1,Y
0
1 ), . . . , (Xn,Y

0
n )}

If we make a small compromise to risk, we can form a sensible
suite of risk estimators

To wit, letting Y 0 = (Y 0
1 , . . . ,Y

0
n )>, define

Rin = EY 0|DP̂D0`f̂ =
1

n

n∑
i=1

EY 0|D`(f̂ (Xi ),Y
0
i )

Then the average optimism is

opt = EY [Rin − R̂train]

Typically, opt is positive as R̂train will underestimate the risk
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Risk estimation: a general form

It turns out for a variety of ` (such as squared error and 0-1)

opt =
2

n

n∑
i=1

Cov(f̂ (Xi ),Yi )

Therefore, we get the following expression of risk

EYRin = EY R̂train +
2

n

n∑
i=1

Cov(f̂ (Xi ),Yi ),

which has unbiased estimator (i.e. EYRgic = EYRin)

Rgic = R̂train +
2

n

n∑
i=1

Cov(f̂ (Xi ),Yi )
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Degrees of freedom

We call the term (where σ2 = VYi )

df =
1

σ2

n∑
i=1

Cov(f̂ (Xi ),Yi )

the degrees of freedom
(This is really the effective number of parameters, with some caveats)

Our task now is to either estimate or compute opt to produce ôpt
and form:

R̂gic = R̂train + ôpt

This leads to Mallows Cp/Stein’s unbiased risk estimatior (SURE),
as well as forms for AIC, BIC, and others
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Degrees of freedom: Example

Sometimes the df is exactly computable.
(In other cases, it needs to be estimated)

Look at least squares regression onto X, with VYi = σ2
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Information criteria

Of course, this isn’t the usual way to introduce/conceptualize
information criteria

For me, thinking of the training error as overly optimistic and
correcting for that optimism is conceptually appealing

For others, forming a metric1 on probability measures is more
appealing

Let’s go over this now for completeness

1It will turn out to be a psuedo-metric; a small detail
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Comparing probability measures
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Kullback-Leibler

Suppose we have data Y that comes from the probability density
function f .

What happens if we use the probability density function g instead?

Example: Suppose Y ∼ N(µ, σ2) = f . We want to predict a new
Y∗, but we model it as Y∗ ∼ N(µ∗, σ

2) = g

How far away are we? We can either compare µ to µ∗ or Y to Y ∗

(This is the approach taken via the optimism)

Or, we can compute how far f is from g
(far indicates we need a notion of distance)
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Kullback-Leibler

One central idea is Kullback-Leibler discrepancy2

KL(f , g) =

∫
log

(
f (y)

g(y)

)
f (y)dy

∝ −
∫

log(g(y))f (y)dy (ignore term without g)

= −Pf [log(g(Y ))]

This gives us a sense of the loss incurred by using g instead of f .

2This has many features of a distance, but is not a true distance as
KL(f , g) 6= KL(g , f ).
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Kullback-Leibler discrepancy

Usually, g will depend on some parameters, call them θ

Example:In regression, we can specify f = N(X>β, σ2) for a
fixed (true)3β, and let gθ = N(X>β, σ2) over all θ ∈ Rp × R+

As KL(f , gθ) = −Pf [log(gθ(Y ))], we minimize this over θ.

Again, Pf is unknown, so we minimize − log(gθ(Y )) instead. This
is the maximum likelihood value

θ̂ML = arg max
θ

gθ(Y )

3We actually don’t need to assume things about a true model nor have it be
nested in the alternative models.

13



Kullback-Leibler discrepancy
Now, to get an operational characterization of the KL divergence
at the ML solution

−Pf [log(gθ̂ML
(Y ))]

we need an approximation (don’t know f , still)

This approximation4 is exactly AIC:

AIC = − log(gθ̂ML
(Y )) + |β̂ML|

Example: Let log(gθ(y)) = −n
2 log(2πσ2)− 1

2σ2 ||Y − Xβ||22
σ2 known: β̂ = X†Y

AIC ∝ nR̂train/(2σ2) + p = R̂train + 2σ2n−1p

σ2 unknown: β̂ = X†Y , nσ̂2 = (I−XX†)Y = nR̂train

AIC ∝ n log(R̂train)/2 + p = log(R̂train) + 2n−1p
4See “Multimodel Inference” Burnham, Anderson (2004)
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Summary

For R̂gic:

R̂train+ôpt = R̂train+2σ2n−1df =


AIC, known σ2

Mallows Cp if f̂ (X ) = X>β̂LS

SURE most f̂ (X )

Or

IC = log(R̂train) + cnn
−1df =

{
AIC, unknown σ2 if cn = 2

BIC if cn = log(n)
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Cross-validation
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A different approach to risk estimation

Let (X0,Y0) be a test observation, identically distributed as an
element in D, but also independent of D.

Prediction risk: R(f ) = E(Y0 − f (X0))2

Of course, the quantity (Y0 − f (X0))2 is an unbiased estimator of
R(f ) and hence we could estimate R(f )

However, we don’t have any such new observation

Or do we?
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An intuitive idea

Let’s set aside one observation and predict it

For example: Set aside (X1,Y1) and fit f̂ (1) on (X2,Y2), . . . , (Xn,Yn).

(The notation f̂ (1) just symbolizes leaving out the first observation before fitting f̂ )

R1(f̂ (1)) = (Y1 − f̂ (1)(X1))2

As the left off data point is independent of the data points used
for estimation,

E(X1,Y1)|D(1)
R1(f̂ (1))

D
= R(f̂ (Dn−1)) ≈ R(f̂ (D))
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Leave-one-out cross-validation

Cycling over all observations and taking the average produces
leave-one-out cross-validation

CVn(f̂ ) =
1

n

n∑
i=1

Ri (f̂
(i)) =

1

n

n∑
i=1

(Yi − f̂ (i)(Xi ))2.
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More general cross-validation schemes

Let N = {1, . . . , n} be the index set for D

Define a distribution V over N with (random) variable v

Then, we can form a general cross-validation estimator as

CVV(f̂ ) = EV P̂v `f̂ (v)
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More general cross-validation schemes:
Examples

CVV(f̂ ) = EV P̂v `f̂ (v)

• K-fold: Fix V = {v1, . . . , vK} such that vj ∩ vk = ∅ and⋃
j vj = N

CVK (f̂ ) =
1

K

∑
v∈V

1

|v |
∑
i∈v

(Yi − f̂ (v)(Xi ))2

• Bootstrap: Let V be given by the bootstrap distribution
over N (that is, sampling with replacement many times)

• Factorial: Let V be given by all subsets (or a subset of all
subsets) of N (that is, putting mass 1/(2n − 2) on each subset)
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More general cross-validation schemes: A
comparison

• CVK gets more computationally demanding as K → n

• The bias of CVK goes down, but the variance increases as
K → n

• The factorial version isn’t commonly used except when doing
a ‘real’ data example for a methods paper

• There are many other flavors of CV. One of them, called
“consistent cross validation” [Homework] is a recent
addition that is designed to work with sparsifying algorithms
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Summary time
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Risk estimation methods

CV Prediction risk consistent (Dudoit, van der Laan (2005)).
Generally selects a model larger than necessary (unproven)

AIC Minimax optimal risk estimator (Yang, Barron (1998)).
Model selection inconsistent∗

BIC Model selection consistent (Shao (1997) [low dimensional].
Wang, Li, Leng (2009) [high dimensional]). Slow rate for
risk estimation∗

(Stone (1977) shows that CVn and AIC are asymptotically equivalent.)

(∗Yang (2005) gives an impossibility theorem: for a linear regression problem it is

impossible for a model selection criterion to be both consistent and achieve minimax

optimal risk estimation)
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