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SUBSET SELECTION AND REGULARIZATION

For now, let's assume we are doing ordinary least squares, and
hence the design (feature) matrix is X € R"*P,

We want to do model selection for at least three reasons:

e PREDICTION ACCURACY: Can essentially always be improved
by introducing some bias

e INTERPRETATION: A large number of features can sometimes
be distilled into a smaller number that comprise the “big
(little?) picture”

e COMPUTATION: A large p can create a huge computational
bottleneck.



SUBSET SELECTION AND REGULARIZATION

We will address three related ideas
e MODEL SELECTION: Selection of only some of the original p
features
e DIMENSION REDUCTION /EXPANSION: Creation of new
features to help with prediction
e REGULARIZATION: Add constraints to optimization problems
to provide stabilization



RISK ESTIMATION

REMINDER: Prediction risk is
R(f) =Pz plr <> Bias + Variance

The overridding theme is that we would like to add a judicious
amount of bias to get risk

As R isn't known, we need to estimate it

As discussed, fA?tram = I@’Ef isn't very good

(In fact, one tends to not add bias when estimating R with B¢f)

Rirain tends to R, hence we can call it



RISK ESTIMATION: A GENERAL FORM

Assume that we get a new draw of the training data, D°, such that
D ~ D° and

D={(X,Y1),...,(Xn, Ya)} and D°={(Xy,Y?),...,(Xn, YO)}

n

If we make a small compromise to risk, we can form a sensible
suite of risk estimators

To wit, letting YO = (YP,..., YO)T, define
1 n
Rin=EyopPpols = — ;Eyopﬁ(f(X;), Y?)
1=
Then the average optimism is

Opt = IEY[Rin - I%train]

Typically, opt is positive as I%tram will underestimate the risk

ot



RISK ESTIMATION: A GENERAL FORM

It turns out for a variety of £ (such as squared error and 0-1)

opt = ZCOV (Xi),Yi)

Therefore, we get the following expression of risk

R 2 < R
Ey Rin = Ey Rixain + Zl Cov(F(Xi), Yi),
=
which has unbiased estimator (i.e. EyRgic = Ey Rin)

A 2 o A
Rgic = Rtrain + E Zl COV(f(X,), %)
i=



DEGREES OF FREEDOM

We call the term (where 02 = VY;)

1 < s
df = — > Cov(f(Xi), Y7)
i=1

the degrees of freedom

(This is really the , with some caveats)

Our task now is to either estimate or compute opt to produce gp\t
and form:

'Qgic = étrain + EIR

This leads to Mallows Cp/Stein’s unbiased risk estimatior (SURE),
as well as forms for AIC, BIC, and others



DEGREES OF FREEDOM: EXAMPLE

Sometimes the df is exactly computable.

(In other cases, it needs to be estimated)

Look at least squares regression onto X, with VY; = o2



INFORMATION CRITERIA

Of course, this isn't the usual way to introduce/conceptualize
information criteria

For me, thinking of the as overly and
correcting for that optimism is conceptually appealing

For others, forming a metric! on probability measures is more
appealing

Let's go over this now for completeness

1t will turn out to be a psuedo-metric; a small detail



Comparing probability measures

=] 5 = = £ DA
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KULLBACK-LEIBLER

Suppose we have data Y that comes from the probability density
function f.

What happens if we use the probability density function g instead?

ExaMPLE: Suppose Y ~ N(p,02) = f. We want to predict a new
Y., but we model it as Y, ~ N(,u*,az) =g

How far away are we? We can either compare i to py or Y to Y*
(This is the approach taken via the )

Or, we can compute how fis from g

(far indicates we need a notion of distance)
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KULLBACK-LEIBLER

One central idea is Kullback-Leibler discrepancy?

KL(r.g) = [ 1og (“”) F(y)dy

g(y)
x — / log(g(y))f(y)dy (ignore term without g)
= —Pr[log(g(Y))]
This gives us a sense of the incurred by using g instead of f.

2This has many features of a distance, but is not a true distance as
KL(f,g) # KL(g, ).
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KULLBACK-LEIBLER DISCREPANCY

Usually, g will depend on some parameters, call them 6

FXAMPLE:In regression, we can specify f = N(X '3, 02) for a
fixed (true)3s3, and let gg = N(X T3, 02) over all # € RP x Rt

As KL(f,gp) = —P¢[log(gp(Y))], we minimize this over 6.

Again, P is unknown, so we minimize — log(gyp(Y')) instead. This
is the maximum likelihood value

O = argmaxgy(Y)
9

%We actually don't need to assume things about a true model nor have it be

nested in the alternative models.
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KULLBACK-LEIBLER DISCREPANCY

Now, to get an operational characterization of the KL divergence
at the ML solution

—Prllog(g,, (Y))]

we need an approximation (don't know f, still)
This approximation? is exactly AlIC:
AIC = —log(gg,, (Y)) + |Bml

Example: Let log(gp(y)) = — 5 log(2mo?) — ﬁ“ Y — XB|3
o2 KNOWN: B =XY
AIC nﬁtrain/(zaz) +p= 'étrain + 202n_1p
o2 UNKNOWN: B = XY, n62 = (1-XXN)Y = nRiain
AIC < n Iog(l%train)/2 +p= |og(l%train) +2n71p

“See “Multimodel Inference” Burnham, Anderson (2004)
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SUMMARY

For Rgic:

AIC, known o?
Rirain+0pt = Rizain+202n~1df = { Mallows Cp if 7(X) = XTBs
SURE most 7(X)

Or

AIC, unknown o2 if ¢, =2

IC = log(Rirain) + cpn~tdf =
B(Firsin) {BIC if ¢, = log(n)
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Cross-validation

CIRY= = =» = 9ac
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A DIFFERENT APPROACH TO RISK ESTIMATION

Let (Xo, Yo) be a test observation, identically distributed as an
element in D, but also of D.

Prediction risk: R(f) = E(Yo — f(X0))?

Of course, the quantity (Yo — f(Xo))? is an unbiased estimator of
R(f) and hence we could estimate R(f)

However,

Or do we?
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AN INTUITIVE IDEA

Let's set aside one observation and predict it

For example: Set aside (X1, Y1) and fit f(1) on (X, Ya), ..., (Xp, Y»)

(The notation FO just symbolizes leaving out the first observation before fitting f)
Ri(FM) = (V1 = FP(x1))?

As the left off data point is of the data points used
for estimation,

~ D ~ A
E(Xl,Yl)\Du) Rl(f(l)) = R(f(Dp-1)) = R(f(D))
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LEAVE-ONE-OUT CROSS-VALIDATION

Cycling over all observations and taking the average produces
leave-one-out cross-validation
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MORE GENERAL CROSS-VALIDATION SCHEMES

Let N ={1,...,n} be the index set for D
Define a distribution V over A/ with (random) variable v

Then, we can form a general cross-validation estimator as
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MORE GENERAL CROSS-VALIDATION SCHEMES:
EXAMPLES

CVV(f) = EVI@)VE,?(V)

e K-roLD: Fix V = {v,..., vk} such that v; N vx = 0 and

UjVj:N

CVk(F) = 3¢ 3o S0 = 00

veV iev

e BOOTSTRAP: Let V be given by the bootstrap distribution
over N (that is, sampling with replacement many times)

e FACTORIAL: Let V be given by all subsets (or a subset of all
su bsets) of N (that is, putting mass 1/(2" — 2) on each subset)
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MORE GENERAL CROSS-VALIDATION SCHEMES: A
COMPARISON

CVk gets more computationally demanding as K — n

The bias of CVk goes down, but the variance increases as
K—n

The factorial version isn't commonly used except when doing
a ‘real’ data example for a methods paper

There are many other flavors of CV. One of them, called
“consistent cross validation” [HOMEWORK] is a recent
addition that is designed to work with algorithms
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Summary time



RISK ESTIMATION METHODS

CV  Prediction risk consistent (Dudoit, van der Laan (2005)).
Generally selects a model larger than necessary (unproven)

AIC  Minimax optimal risk estimator (Yang, Barron (1998)).
Model selection inconsistent™

BIC  Model selection consistent (Shao (1997) [low dimensional].
Wang, Li, Leng (2009) [high dimensional]). Slow rate for
risk estimation®

(Stone (1977) shows that CV, and AIC are asymptotically equivalent.)
(*Yang (2005) gives an impossibility theorem: for a linear regression problem it is
impossible for a model selection criterion to be both consistent and achieve minimax

optimal risk estimation)
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