LINEAR METHODS FOR REGRESSION: RISK ESTIMATION -Statistical Machine Learning-

Lecturer: Darren Homrighausen, PhD

For now, let's assume we are doing ordinary least squares, and hence the design (feature) matrix is $X \in \mathbb{R}^{n \times p}$.

We want to do model selection for at least three reasons:

- PREDICTION ACCURACY: Can essentially *always* be improved by introducing some bias
- INTERPRETATION: A large number of features can sometimes be distilled into a smaller number that comprise the "big (little?) picture"
- COMPUTATION: A large *p* can create a huge computational bottleneck.

We will address three related ideas

- MODEL SELECTION: Selection of only some of the original *p* features
- DIMENSION REDUCTION/EXPANSION: Creation of new features to help with prediction
- **REGULARIZATION:** Add constraints to optimization problems to provide stabilization

RISK ESTIMATION

REMINDER: Prediction risk is

$$R(f) = \mathbb{P}_{Z,\mathcal{D}}\ell_f \leftrightarrow \text{Bias} + \text{Variance}$$

The overridding theme is that we would like to add a judicious amount of bias to get lower risk

As R isn't known, we need to estimate it

As discussed, $\hat{R}_{\text{train}} = \hat{\mathbb{P}}\ell_f$ isn't very good (In fact, one tends to not add bias when estimating R with $\hat{\mathbb{P}}\ell_f$)

 $\hat{R}_{ ext{train}}$ tends to underestimate R, hence we can call it optimistic

RISK ESTIMATION: A GENERAL FORM

Assume that we get a new draw of the training data, $\mathcal{D}^0,$ such that $\mathcal{D}\sim\mathcal{D}^0$ and

 $\mathcal{D} = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ and $\mathcal{D}^0 = \{(X_1, Y_1^0), \dots, (X_n, Y_n^0)\}$

If we make a small compromise to risk, we can form a sensible suite of risk estimators

To wit, letting $Y^0 = (Y_1^0, \dots, Y_n^0)^{\top}$, define

$$R_{in} = \mathbb{E}_{Y^0|\mathcal{D}} \hat{\mathbb{P}}_{\mathcal{D}^0} \ell_{\hat{f}} = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{Y^0|\mathcal{D}} \ell(\hat{f}(X_i), Y_i^0)$$

Then the average optimism is

$$opt = \mathbb{E}_{Y}[R_{in} - \hat{R}_{train}]$$

Typically, ${
m opt}$ is positive as $\hat{R}_{
m train}$ will underestimate the risk $_{
m s}$, $_{
m s}$

RISK ESTIMATION: A GENERAL FORM

It turns out for a variety of ℓ (such as squared error and 0-1)

$$opt = \frac{2}{n} \sum_{i=1}^{n} Cov(\hat{f}(X_i), Y_i)$$

Therefore, we get the following expression of risk

$$\mathbb{E}_{\mathbf{Y}}R_{in} = \mathbb{E}_{\mathbf{Y}}\hat{R}_{\text{train}} + \frac{2}{n}\sum_{i=1}^{n} \text{Cov}(\hat{f}(X_i), Y_i),$$

which has unbiased estimator (i.e. $\mathbb{E}_{Y}R_{\text{gic}} = \mathbb{E}_{Y}R_{in}$)

$$R_{\rm gic} = \hat{R}_{\rm train} + \frac{2}{n} \sum_{i=1}^{n} \operatorname{Cov}(\hat{f}(X_i), Y_i)$$

・ロト・(四)・(日)・(日)・(日)・(日)

DEGREES OF FREEDOM

We call the term (where $\sigma^2 = \mathbb{V}Y_i$)

$$\mathrm{df} = \frac{1}{\sigma^2} \sum_{i=1}^n \mathrm{Cov}(\hat{f}(X_i), Y_i)$$

the degrees of freedom

(This is really the effective number of parameters, with some caveats)

Our task now is to either estimate or compute opt to produce $\widetilde{\operatorname{opt}}$ and form:

$$\hat{R}_{\rm gic} = \hat{R}_{\rm train} + \widehat{\rm opt}$$

This leads to Mallows Cp/Stein's unbiased risk estimatior (SURE), as well as forms for AIC, BIC, and others

Degrees of freedom: Example

Sometimes the df is exactly computable.

(In other cases, it needs to be estimated)

Look at least squares regression onto \mathbb{X} , with $\mathbb{V}Y_i = \sigma^2$

Of course, this isn't the usual way to introduce/conceptualize information criteria

For me, thinking of the training error as overly optimistic and correcting for that optimism is conceptually appealing

For others, forming a metric 1 on probability measures is more appealing

Let's go over this now for completeness

Comparing probability measures

KULLBACK-LEIBLER

Suppose we have data Y that comes from the probability density function f.

What happens if we use the probability density function g instead?

EXAMPLE: Suppose $Y \sim N(\mu, \sigma^2) = f$. We want to predict a new Y_* , but we model it as $Y_* \sim N(\mu_*, \sigma^2) = g$

How far away are we? We can either compare μ to μ_* or Y to Y^* (This is the approach taken via the optimism)

Or, we can compute how far f is from g (far indicates we need a notion of distance)

Kullback-Leibler

One central idea is Kullback-Leibler discrepancy²

$$\begin{aligned} \mathsf{KL}(f,g) &= \int \log\left(\frac{f(y)}{g(y)}\right) f(y) dy \\ &\propto -\int \log(g(y)) f(y) dy \qquad \text{(ignore term without } g) \\ &= -\mathbb{P}_f[\log(g(Y))] \end{aligned}$$

This gives us a sense of the loss incurred by using g instead of f.

²This has many features of a distance, but is not a true distance as $KL(f,g) \neq KL(g,f)$.

Kullback-Leibler discrepancy

Usually, g will depend on some parameters, call them heta

EXAMPLE: In regression, we can specify $f = N(X^{\top}\beta, \sigma^2)$ for a fixed (true)³ β , and let $g_{\theta} = N(X^{\top}\beta, \sigma^2)$ over all $\theta \in \mathbb{R}^p \times \mathbb{R}^+$

As $KL(f, g_{\theta}) = -\mathbb{P}_{f}[\log(g_{\theta}(Y))]$, we minimize this over θ .

Again, \mathbb{P}_f is unknown, so we minimize $-\log(g_\theta(Y))$ instead. This is the maximum likelihood value

$$\hat{ heta}_{ML} = rg\max_{ heta} g_{ heta}(Y)$$

Kullback-Leibler discrepancy

Now, to get an operational characterization of the KL divergence at the ML solution

 $-\mathbb{P}_f[\log(g_{\hat{\theta}_{ML}}(Y))]$

we need an approximation (don't know f, still)

This approximation⁴ is exactly AIC:

$$\mathrm{AIC} = -\log(g_{\hat{ heta}_{ML}}(Y)) + |\hat{eta}_{ML}|$$

Example: Let $\log(g_{\theta}(y)) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}||Y - \mathbb{X}\beta||_2^2$ σ^2 KNOWN: $\hat{\beta} = \mathbb{X}^{\dagger}Y$

AIC
$$\propto n\hat{R}_{\text{train}}/(2\sigma^2) + p = \hat{R}_{\text{train}} + 2\sigma^2 n^{-1}p$$

 $\sigma^2 \text{ UNKNOWN: } \hat{\beta} = \mathbb{X}^{\dagger}Y, n\hat{\sigma}^2 = (I - \mathbb{X}\mathbb{X}^{\dagger})Y = n\hat{R}_{\text{train}}$
AIC $\propto n\log(\hat{R}_{\text{train}})/2 + p = \log(\hat{R}_{\text{train}}) + 2n^{-1}p$

⁴See "Multimodel Inference" Burnham, Anderson (2004) → < => < => = ∽へへ

SUMMARY

For \hat{R}_{gic} :

$$\hat{R}_{\text{train}} + \widehat{\text{opt}} = \hat{R}_{\text{train}} + 2\sigma^2 n^{-1} \text{df} = \begin{cases} \text{AIC, known } \sigma^2 \\ \text{Mallows Cp} & \text{if } \hat{f}(X) = X^\top \hat{\beta}_{LS} \\ \text{SURE} & \text{most } \hat{f}(X) \end{cases}$$

Or

$$IC = \log(\hat{R}_{train}) + c_n n^{-1} df = \begin{cases} AIC, \text{ unknown } \sigma^2 & \text{if } c_n = 2\\ BIC & \text{if } c_n = \log(n) \end{cases}$$

Cross-validation

A DIFFERENT APPROACH TO RISK ESTIMATION

Let (X_0, Y_0) be a test observation, identically distributed as an element in \mathcal{D} , but also independent of \mathcal{D} .

Prediction risk: $R(f) = \mathbb{E}(Y_0 - f(X_0))^2$

Of course, the quantity $(Y_0 - f(X_0))^2$ is an unbiased estimator of R(f) and hence we could estimate R(f)

However, we don't have any such new observation

Or do we?

AN INTUITIVE IDEA

Let's set aside one observation and predict it

For example: Set aside (X_1, Y_1) and fit $\hat{f}^{(1)}$ on $(X_2, Y_2), \ldots, (X_n, Y_n)$

(The notation $\hat{f}^{(1)}$ just symbolizes leaving out the first observation before fitting \hat{f})

$$R_1(\hat{f}^{(1)}) = (Y_1 - \hat{f}^{(1)}(X_1))^2$$

As the left off data point is independent of the data points used for estimation,

$$\mathbb{E}_{(X_1,Y_1)|\mathcal{D}_{(1)}}R_1(\hat{f}^{(1)}) \stackrel{D}{=} R(\hat{f}(\mathcal{D}_{n-1})) \approx R(\hat{f}(\mathcal{D}))$$

Cycling over all observations and taking the average produces leave-one-out cross-validation

$$\operatorname{CV}_n(\hat{f}) = \frac{1}{n} \sum_{i=1}^n R_i(\hat{f}^{(i)}) = \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{f}^{(i)}(X_i))^2.$$

Let $\mathcal{N} = \{1, \ldots, n\}$ be the index set for \mathcal{D}

Define a distribution \mathcal{V} over \mathcal{N} with (random) variable v

Then, we can form a general cross-validation estimator as

$$\mathrm{CV}_{\mathcal{V}}(\hat{f}) = \mathbb{E}_{\mathcal{V}}\hat{\mathbb{P}}_{\mathbf{v}}\ell_{\hat{f}^{(\mathbf{v})}}$$

More general cross-validation schemes: Examples

$$\operatorname{CV}_{\mathcal{V}}(\hat{f}) = \mathbb{E}_{\mathcal{V}}\hat{\mathbb{P}}_{v}\ell_{\hat{f}^{(v)}}$$

• K-FOLD: Fix $V = \{v_1, \dots, v_K\}$ such that $v_j \cap v_k = \emptyset$ and $\bigcup_j v_j = \mathcal{N}$

$$\operatorname{CV}_{\mathcal{K}}(\hat{f}) = \frac{1}{\mathcal{K}} \sum_{v \in \mathcal{V}} \frac{1}{|v|} \sum_{i \in v} (Y_i - \hat{f}^{(v)}(X_i))^2$$

- BOOTSTRAP: Let \mathcal{V} be given by the bootstrap distribution over \mathcal{N} (that is, sampling with replacement many times)
- FACTORIAL: Let V be given by all subsets (or a subset of all subsets) of N (that is, putting mass 1/(2ⁿ − 2) on each subset)

More general cross-validation schemes: A comparison

- $\mathrm{CV}_{\mathcal{K}}$ gets more computationally demanding as $\mathcal{K}
 ightarrow n$
- The bias of $\mathrm{CV}_{\mathcal{K}}$ goes down, but the variance increases as $\mathcal{K} \to n$
- The factorial version isn't commonly used except when doing a 'real' data example for a methods paper
- There are many other flavors of CV. One of them, called "consistent cross validation" [HOMEWORK] is a recent addition that is designed to work with sparsifying algorithms

(日)

Summary time

RISK ESTIMATION METHODS

- CV Prediction risk consistent (Dudoit, van der Laan (2005)). Generally selects a model larger than necessary (unproven)
- AIC Minimax optimal risk estimator (Yang, Barron (1998)). Model selection inconsistent*
- BIC Model selection consistent (Shao (1997) [low dimensional]. Wang, Li, Leng (2009) [high dimensional]). Slow rate for risk estimation*

(Stone (1977) shows that CV_n and AIC are asymptotically equivalent.) (*Yang (2005) gives an impossibility theorem: for a linear regression problem it is impossible for a model selection criterion to be both consistent and achieve minimax optimal risk estimation)