Neural Networks and Deep Learning 2
 -Statistical Learning and Data Mining-

Neural networks: General form

Generalizing to multi-layer neural networks, we can specify any number of hidden units:
(I'm eliminating the bias term for simplicity)

$$
\begin{aligned}
& 0 \text { Layer }:=\sigma\left(\alpha_{\text {lowest }}^{\top} X\right) \\
& 1 \text { Layer: }=\sigma\left(\alpha_{\text {lowest }+1}^{\top}(0 \text { Layer })\right) \\
& \vdots \\
& \text { Top Layer }:=\sigma\left(\alpha_{\text {Top }}^{\top}(\text { Top - 1 Layer })\right) \\
& L\left(\mu_{g}(X)\right)=\beta_{g 0}+\beta_{g}^{\top}(\text { Top Layer }) \quad(g=1, \ldots G)
\end{aligned}
$$

Neural networks: General form

Some comments on adding layers:

- It has been shown that one hidden layer is sufficient to approximate any piecewise continuous function (However, this may take a huge number of hidden units (i.e. $K \gg 1$))
- By including multiple layers, we can have fewer hidden units per layer. Also, we can encode (in)dependencies that can speed computations

Returning to Doppler function

Neural networks: Example

We can try to fit it with a single layer NN with different levels of hidden units K

A notable difference with B-splines is that 'wiggliness' doesn't necessarily increase with K due to regularization

Some specifics:

- I used the R package neuralnet
(This uses the resilient backpropagation version of the gradient descent)
- I regularized via a stopping criterion $\left(\|\partial \ell\|_{\infty}<0.01\right)$
- I did 3 replications
(This means I did three starting values and then averaged the results)
- The layers and hidden units are specified like
(\# Hidden Units on Layer 1) (\# Hidden Units on Layer 2)..

Neural networks: Example

Figure: Single layer NN vs. B-splines

Neural networks: Risk

What's the estimation equality? $\operatorname{MSE}=\mathbb{E}\left(\hat{f}(X)-f_{*}(X)\right)^{2}$

Figure: 3 layer NN^{1} vs. B-splines
${ }^{1}$ The numbers mean $(\#($ layer 1) \#(layer 2) \#(layer 3))

Neural networks: Example

Figure: Optimal NNs vs. Optimal B-spline fit

Neural networks: Code for Example

```
trainingdata \(=\) cbind \((x, Y)\)
colnames(trainingdata) \(=c(\) "Input", "Output")
testdata \(=\) xTest
require("neuralnet")
\(\mathrm{K}=\mathrm{c}(10,5,15)\)
nRep \(=3\)
nn.out \(=\) neuralnet (Output~Input,trainingdata,
                                    hidden=K, threshold=0.01,
                                    rep=nRep)
nn.results \(=\) matrix(0,nrow=length(testdata), ncol=nRep)
for (reps in 1:nRep) \{
    pred.obj = compute(nn.out, testdata,rep=reps)
    nn.results[,reps] = pred.obj\$net.result
\}
Yhat \(=\) apply(nn.results,1,mean)
```


Hierarchical view

Hierarchical view

Figure: Recall: Single hidden layer neural network. Note the similarity to latent factor models

Hierarchical from example

Error: 3.779386 Steps: 3425

This is a directed acyclic graph (DAG)
nn. out $=$ neuralnet (Output ${ }^{\sim}$ Input, trainingdata, hidden=c $(3,4)$)
plot(nn.out)

Neural networks: Localization

One of the main curses/benefits of neural networks is the ability to localize

This makes neural networks very customizable, but commits the data analyst to intensively examining the data

Suppose we are using 1 input and we want to restrict the implicit DAG

Neural networks: Localization

That is, we might want to constrain some of the weights to 0

Error: 3.137653 Steps: 49829

Figure: Unconstrained neural network
nn.out = neuralnet(Output~Input,trainingdata, hidden=c $(2,2))$

Neural networks: Localization

We can do this in neuralnet via the exclude parameter
To use it, do the following:

```
exclude = matrix(1,nrow=2,ncol=3)
exclude[1,] = c(2,2,2)
exclude[2,] = c(2,3,1)
nn.out = neuralnet(Output ~Input,trainingdata,
    hidden=c}(2,2), threshold=0.01
    exclude=exclude)
```

exclude is a $E \times 3$ matrix, with E the number of exclusions

- first column stands for the layer
- the second column for the input neuron
- the third column for the output neuron

Neural networks: Localization

Error: 3.137653 Steps: 49829

Error: 5.347554 Steps: 26558

Figure: Not-constrained vs. constrained

Neural networks: Crime data

```
M
percentage of males aged 1424.
So
indicator variable for a Southern state.
Ed
mean years of schooling.
Po1
police expenditure in 1960.
LF
labour force participation rate.
M.F
number of males per 1000 females.
y
rate of crimes in a particular category per capita
```


Neural networks: Crime data

Neural networks: Crime data

We may want to constrain the neural network to have neurons specifically about

- Demographic variables
- Police expenditure
- Economics

This type of prior information can be encoded via exclude
(This is, in my opinion, when neural networks work well)

Tuning parameters

Neural networks: Tuning parameters

The most common recommendation l've seen is to take the 3 tuning parameters: The number of hidden units, the number of layers, and the regularization parameter λ (or a stopping criterion λ for the iterative solver)

Either choose $\lambda=0$ and use risk estimation to choose the number of hidden units
(This could be quite computationally intensive as we would need a reasonable 2-d grid over units \times layers)

Or, fix a large number of layers and hidden units and choose λ via risk estimation
(This is the preferred method)

Neural networks: Tuning parameters

We can use a GIC method:

$$
\mathrm{AIC}=\text { training error }+2 \hat{d} f \hat{\sigma}^{2}
$$

(This is reported by neuralnet, by setting likelihood $=T$)
Or via cross-validation

Neural networks: Tuning parameters

Unfortunately, neuralnet provides a somewhat bogus measure of AIC/BIC

Here is the relevant part of the code

```
if (likelihood) {
    synapse.count = length(weights) - length(exclude)
    aic = 2 * error + (2 * synapse.count)
    bic = 2 * error + log(nrow(response))*synapse.count
}
```

They use the number of parameters for the degrees of freedom!

