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Statistical learning and data mining is about..

• discovering structure in data

• making predictions about unknown quantities
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Class Overview

Practically speaking, this means we seek to:

• find relationships between a group of explanatory and
response variables that provides good predictive performance

• reduce the size of the group of variables for scientific,
statistical, or computational purposes

and, perhaps most importantly..

Knowing the techniques, how they work, when they apply, and how
to implement them
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Class Outline

Over the next semester we will address:

1. High dimensional classification and regression

2. Nonparametric methods

3. Clustering

4. Graphical models

This course will emphasize methods and applications. However,
theory will be presented to illustrate some important
points/techniques.
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• The Elements of Statistical Learning Hastie, Tibshirani, Friedman

• Weak Convergence and Empirical Processes Van der Vaart, Wellner
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• Statistics for High-Dimensional Data Bühlmann, Van de Geer

• Generic Chaining Talagrand

• Introduction to Nonparametric Regression Tsybakov

• Convex Optimization Boyd, Vandenberghe
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High level overview
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So many possibilities

There are many ways this course can go:

1. Theory: How to prove results about methods and
understand statistical/quantitative papers

2. Methodology: Discuss the motivation and ‘inner workings’

3. Applications: Go over implementation, use of software,
data problems

4. Computation: Go through algorithms, parallelization, data
structures...

Task: Assign a percent to each category representing your
interests.
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Statistical learning terminology
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Introduction

Statistical Machine Learning (SML) is statistics with a focus on
prediction, scalability, and high dimensional problems

Regression: predict Y ∈ R from covariates or features X

Classification: predict Y ∈ {0, 1} from covariates or features X

Finding structure:

• Finding groups or clusters in the data

• Dimension reduction

• Graphical models (conditional independence structure)
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Types of learning

Supervised

Regression Classification

Semi-supervised

PCA regression

Unsupervised

Graphical models

Some comments:

Comparing to the response Y gives a natural notion of
prediction accuracy

Much more heuristic, unclear what a good solution would be.
We’ll return to this later in the semester.
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Three main themes

Convexity

Convex problems can be solved efficiently. If necessary, we try to
approximate nonconvex problems with convex ones

Sparsity

Many interesting problems are high dimensional
(the number of covariates, p, is large compared to the number of observations, n)

Assumptions

What assumptions do you need to make to motivate the method
or guarantee some property?
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Supervised Methods
(We will return to unsupervised methods later in the class)
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The set-up

We observe n pairs of data (X>1 ,Y1)>, . . . , (X>n ,Yn)>

Let1 Z>i = (X>i ,Yi ) ∈ Rp × R

We’ll refer to the training data as D = {Z1, . . . ,Zn}

Call Yi the response, while Xi is the feature or covariate (vector)

Example: Yi is whether a threat is detected in an im-
age and the Xij is the value at the j th pixel
of an image (p might be 10242 = 1048576)

1These transposes get tiredsome. We’ll get a bit sloppy and drop them
selectively in what follows.
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The set-up

We use the training data D to train an algorithm, producing a
function f̂ : Rp → R

Goal: Given a new X ∈ Rp, we want to form predictions

f̂ (X ) = Ŷ (X ,D) = Ŷ

Such that Ŷ is a good prediction of Y , the unobserved response
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Risk, Bayes, bias, variance, and
approximation
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Loss functions and risk
What determines good?

Define a function2 ` : R× R→ R such that smaller values of `
indicate better performance

Two important examples:

• `(f̂ (X ),Y ) = (f̂ (X )− Y )2 (regression, square-error)

• `(f̂ (X ),Y ) = 1(f̂ (X ) 6= Y ) (classification, 0-1)

These expressions are both random variables. This leads us to
define the (prediction or generalization) risk of a procedure f̂ to be

R(f̂ ) = E`(f̂ (X ),Y ) = P`(f̂ (X ),Y ) = P`f̂ =

∫
`(f̂ (X ),Y )dP,

where P is the measure induced by Z = (X ,Y ).

2This is the loss for prediction. Other tasks may have a different domain.
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Risky (and lossy) business

The theoretical basis for prediction/estimation is rooted in
Statistical Decision Theory.

Any distance function3 could serve for the loss function `

We can write the risk as

R(f ) = E`(f (X ),Y ) = EXEY |X `(f (X ),Y )

(The tower property of conditional expectation)

The measureable function f∗ such that this pointwise relation holds:

f∗(x) = argmin
c

EY |X=x`(c ,Y )

is known as the Bayes rule with respect to the loss function `.

3Or, for that matter, topology
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An example: Squared-error loss

If the function `(f (X ),Y ) = (f (X )− Y )2, then

f∗(x) = E[Y |X = x ].

This is known as the regression function; that is, the conditional
expectation of Y given X .
(This is the Bayes rule with respect to the squared error loss function.)

This gives rise to the model

Y = f∗(X ) + ε

where ε is some mean zero fluctuation
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An example: Zero-one loss

Instead, let Y ∈ G = {1, . . . ,G}

As Y takes only a few values, zero-one prediction risk is natural

`(f (X ),Y ) = 1(Y 6= f (X )) =⇒ R(f ) = E[`(f (X ),Y )] =?

(? = P(f (X ) 6= Y ))

Goal: Find an f such that f (X ) = Y as often as possible

Under this loss, we have

f∗(X ) = argmin
g∈G

[1− P(Y = g |X )] = arg max
g∈G

P(Y = g |X )

(Interpretation: The Bayes rule for classification with this loss is to pick the class

that maximizes the conditional probability of Y being that class)
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Training error and risk estimation
Of course, we don’t know P...

We need to estimate it!

Perhaps the most intuitive estimate of the measure P is

P̂ =
1

n

n∑
i=1

δZi
,

where δx is a (probability) measure that puts mass 1 at x .

This is known as the empirical measure of D

Just like Pf (X ) =
∫
f (X )dP, we can write

P̂f (X ) =

∫
f (X )d P̂ =

1

n

n∑
i=1

f (Zi ).
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Example: Maximum likelihood estimation

Suppose that we are interested in estimating a parameter vector µ

We specify a likelihood Lµ(Z ), such as by stating
Z ∼ N(µ,Σ) ∈ Rp and writing

Lµ(Z ) = (2π)−n/2|Σ|−1/2e−(Z−µ)>Σ−1(Z−µ)/2.

Define `µ = log Lµ. Then the maximum likelihood estimator is

arg max
µ

P̂`µ

21



Linear Algebra

22



Background

• We will write vectors as

z =


z1

z2
...
zn


We write this as z ∈ Rn, which is “z is a member of ar-en.”

• We commonly will need to “turn” the vector, which we write
as

z> =
[
z1 z2 . . . zn

]
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Necessary Background: Notation

We will concatenate the covariates or features into the design or
feature matrix X, where

X =
[
x1 x2 · · · xp

]
=


X>1
X>2

...
X>n

 ∈ Rn×p

In words: The covariates (columns) will be lower case letters
and the observations (rows) will be upper case letters

(It appears as though the book goes back and forth between capital and lower case for

various quantities)
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Norms
We will need to measure the size of vectors

The most common one is the one we use every day (implictly):
Euclidean distance4

||x||2 =

√√√√ p∑
k=1

x2
k

Additionally, we will need the Manhattan distance

||x||1 =

p∑
k=1

|xk |

In general, the `r norm is:

||x||r =

(
p∑

k=1

|xk |r
)1/r

4Think: the Pythagorean theorem. 25



Singular Value Decomposition (SVD)
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Singular value decomposition (SVD)

A huge amount of statistics depends on (numerical) linear algebra
concepts

Many, many topics in (numerical) linear algebra are implicitly
motivated by the singular value decomposition (SVD)

Some examples are:

• Multiple regression

• Penalized least squares

• Principal components analysis

• Discriminant analysis
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SVD

The SVD is a generalization of the eigenvector decomposition

Instead of

X = UDU> ←− eigenvector decomposition

we get

X = UDV> ←− singular value decomposition

This change makes the (unique) SVD always exist
(As opposed to the eigenvector decomposition which only exists sometimes)
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Singular value decomposition (SVD)
It turns out we can think of matrix multiplication in terms of
circles and ellipsoids

Take a matrix X and let’s look at the set of vectors

B = {β : ||β||2 ≤ 1}

This is a circle!
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Singular value decomposition (SVD)

What happens when we multiply vectors in this circle by X?

Let

X =

[
2.0 0.5
1.5 3.0

]
and Xβ =

[
2β1 + 0.5β2

1.5β1 + 3β2

]
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Singular value decomposition (SVD)
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What happened?

1. The coodinate axis gets rotated

2. The new axis gets elongated (making an ellipse)

3. This ellipse gets rotated

Let’s break this down into parts...
31



Singular value decomposition (SVD)
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Singular value decomposition (SVD)
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Singular value decomposition (SVD)
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Rotation and Elongation

Rotations: These can be thought of as just reparameterizing the
coordinate axis. This means that they don’t change
the geometry. As the original coordinate axis was or-
thogonal (that is; perpendicular), the new coordinates
must be as well.

Let v1, v2 be two normalized, orthogonal vectors. This means that:

v>1 v2 = 0 and v>1 v1 = v>2 v2 = 1

In matrix notation, if we create V as a matrix with normalized,
orthogonal vectors as columns, then:

V>V =


1 0 0 . . . 0
0 1 0 . . . 0

...
0 0 0 . . . 1

 = I

Here, I is the identity matrix.
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Rotation and Elongation

Elongation: These can be thought of as stretching vectors along
the current coordinate axis. This means that they do
change the geometry by distorting distances. These
are given by multiplication by diagonal matrices.

All diagonal matrices have the form:

D =


d1 0 0 . . . 0
0 d2 0 . . . 0

...
0 0 0 . . . dp
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Singular value decomposition (SVD)
Using this intuition, for any matrix X it is possible to write its SVD:

X = UDV>

where

• U and V are orthogonal (think: rotations)

• D is diagonal (think: elongation)

• The diagonal elements of D are ordered as

d1 ≥ d2 ≥ . . . ≥ dp ≥ 0

Many properties of matrices can be ‘read off’ from the SVD.

Rank: The rank of a matrix answers the question: how many
dimensions does the ellipse live in? In other words, it is
the number of columns of the matrix X, not counting
the columns that are ‘redundant’.
It turns out the rank is exactly the quantity q such that
dq > 0 and dq+1 = 0.
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Singular value decomposition (SVD)
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1. The coordinate axis gets rotated (Multiplication by V>)

1. The new axis gets elongated (Multiplication by D)

2. This ellipse gets rotated (Multiplication by U)
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Singular value decomposition (SVD)
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Singular value decomposition (SVD)
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Singular value decomposition (SVD)
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Summary:

Of all the possible axes of
the original circle, the one
given by v1, v2 has the
unique property:

Xvj = djuj

for all j .

Lastly:

X =
∑
j

djujv
>
j

37



Singular value decomposition (SVD)

Taking this last formulation:

X =
∑
j

djujv
>
j

we see that matrix multiplication looks like

Xβ =
∑
j

djujv
>
j β =

∑
j

ujθj

Implication: Multiplication by X re-expresses β in a new
coordinate system, with coordinates θ> = [θ1, θ2, . . .]
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